

    
      
          
            
  
Scalable Checkpoint / Restart (SCR) User Guide

The Scalable Checkpoint / Restart (SCR) library enables MPI applications
to utilize distributed storage on Linux clusters to attain high file I/O bandwidth
for checkpointing, restarting, and writing large datasets.
With SCR, jobs run more efficiently, recompute less work upon a failure,
and reduce load on shared resources like the parallel file system.
It provides the most benefit to large-scale jobs that write large datasets.
Check out our video [https://youtu.be/_r6svl_eAns] on how SCR works for more information.

SCR provides the following capabilities:


	scalable checkpoint, restart, and output bandwidth,


	asynchronous data transfers to the parallel file system,


	guidance for the optimal checkpoint frequency,


	automated tracking and restart from the most recent checkpoint,


	automated job relaunch within an allocation after hangs or failures.




SCR provides API bindings for C/C++, Fortran, and Python applications.

SCR originated as a production-level implementation of a multi-level checkpoint system
of the type analyzed by [Vaidya]
SCR caches checkpoints in scalable storage,
which is faster but less reliable than the parallel file system.
It applies a redundancy scheme to the cache such that checkpoints can be recovered after common system failures.
It copies a subset of checkpoints to the parallel file system to recover from less common but more severe failures.
In many failure cases, a job can be restarted from a cached checkpoint.
Reading and writing datasets to cache can be orders of magnitude faster than the parallel file system
as shown in the figure below.
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Aggregate write bandwidth with SCR on the Lassen system at LLNL.
Each test runs with 40 processes per node,
where each process writes a 1GB file and calls fsync.
The RAM and SSD plots show the effective bandwidth achieved when
writing to node-local storage and applying a given SCR redundancy scheme.



When writing a cached dataset to the parallel file system, SCR can transfer data asynchronously.
The application may continue once the data has been written to the cache
while SCR copies the data to the parallel file system in the background.
SCR supports general output datasets in addition to checkpoint datasets.

SCR consists of two components: a library and a set of commands.
The application registers its dataset files with the SCR API,
and the library maintains the dataset cache.
The SCR commands are typically invoked from the job batch script.
They are used to prepare the cache before a job starts,
automate the process of restarting a job,
and copy datasets from cache to the parallel file system upon a failure.
Though one gains the most benefit when using both,
one may use the SCR library without the SCR commands.



[Vaidya]
“A Case for Two-Level Recovery Schemes”, Nitin H. Vaidya, IEEE Transactions on Computers, 1998, http://doi.ieeecomputersociety.org/10.1109/12.689645.







Support and Additional Information

The main repository for SCR is located at:

https://github.com/LLNL/scr.

From this site, you can download the source code and manuals for
the current release of SCR.

For more information about the project including active research efforts, please visit:


	https://computing.llnl.gov/projects/scalable-checkpoint-restart-for-mpi


	https://insidehpc.com/2019/12/podcast-scr-scalable-checkpoint-restart-paves-the-way-for-exascale/


	https://www.youtube.com/watch?v=qt2VgIZaoNA


	https://youtu.be/_r6svl_eAns




To contact the developers of SCR for help with using or porting SCR,
please visit:

https://computing.llnl.gov/projects/scalable-checkpoint-restart-for-mpi/contact

There you will find links to join our discussion mailing list for help
topics, and our announcement list for getting notifications of new
SCR releases.
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Quick Start

In this quick start guide, we assume that you already have a basic
understanding of SCR and how it works on HPC systems.
We also assume you have access to a SLURM cluster with a few compute nodes
and a working MPI environment.
We walk through a bare bones example to quickly get you started with SCR.
For more in-depth information,
see subsequent sections in this user’s guide.


Building SCR

SCR has a number of dependencies.
To simplify the install process,
one can use a release tarball with CMake or use Spack.
For full details on building SCR,
please see Section Build SCR.


CMake

SCR requires CMake version 2.8 or higher.
The SCR build uses the CMake FindMPI module to link with MPI.
This module looks for the standard mpicc compiler wrapper,
which must be in your PATH.

To download and build SCR with CMake:

wget https://github.com/LLNL/scr/releases/download/v3.0/scr-v3.0.tgz
tar -zxf scr-v3.0.tgz
cd scr-v3.0

mkdir build install
cd build
cmake -DCMAKE_INSTALL_PREFIX=../install ..
make -j install





There are a number of CMake options to configure the build.
For more details, see Section CMake.



Spack

If you use the Spack [https://github.com/spack/spack] package manager,
SCR and many of its dependencies have corresponding packages.

Before installing SCR with Spack,
one should first configure packages.yaml.
In particular, SCR depends on the system resource manager and MPI library,
and one should define entries for those in packages.yaml.
Examples for configuring common resource managers and MPI libraries
are listed in Section Spack.

SCR can then be installed for SLURM systems with:

spack install scr@3.0





This downloads, builds, and installs SCR and its dependencies.




Building the SCR test_api Example

In this quick start guide, we use the test_api.c program.

If you install SCR with CMake,
test_api.c is compiled as part of the make install step.
You can find it in the examples subdirectory
within the CMake build directory:

cd examples





If you still have this direcotry,
then skip ahead to the next section to run test_api.c.

Alternatively, you will find source files for example programs
in the <install>/share/scr/examples directory,
where <install> is the path in which SCR was installed.

If you install SCR with Spack,
you can identify the SCR install directory with the following command:

spack location -i scr





Then build test_api.c by executing:

cd <install>/share/scr/examples
make test_api





Upon a successful build, you will have a test_api executable.



Running the SCR test_api Example

A quick test of your SCR installation can be done by
running test_api in an interactive job allocation.
The following assumes you are running on a SLURM-based system.
If you are not using SLURM, then modify the node allocation and
run commands as appropriate for your resource manager.

First, obtain compute nodes for testing.
Here we allocate 4 nodes:

salloc -N 4





Once you have the compute nodes you can run test_api.
Here we execute a 4-process run on 4 nodes:

srun -n 4 -N 4 ./test_api





This example program writes 6 checkpoints using SCR.
Assuming all goes well, you should see output similar to the following

>>: srun -n 4 -N 4 ./test_api
Init: Min 0.033856 s    Max 0.033857 s  Avg 0.033856 s
No checkpoint to restart from
At least one rank (perhaps all) did not find its checkpoint
Completed checkpoint 1.
Completed checkpoint 2.
Completed checkpoint 3.
Completed checkpoint 4.
Completed checkpoint 5.
Completed checkpoint 6.
FileIO: Min   52.38 MB/s        Max   52.39 MB/s        Avg   52.39 MB/s       Agg  209.55 MB/s





If you do not see output similar to this,
there may be a problem with your environment or your build of SCR.
Please see the detailed sections of this user guide for more help
or email us (see Support and Additional Information.)

One can use test_api to conduct more interesting tests.
In the SCR source directory,
the testing directory includes scripts to demonstrate different aspects of SCR.
Depending on your shell preference,
TESTING.csh or TESTING.sh are good for getting started.
Each script contains a sequence of additional configurations and commands for running test_api.
One can find those TESTING scripts in a clone of the repo, e.g.:

git clone git@github.com:llnl/scr.git
cd scr/testing







Adding SCR to Your Application

Here we provide an example of integrating the SCR API
into an application to write checkpoints.

int main(int argc, char* argv[]) {
  MPI_Init(argc, argv);

  /* Call SCR_Init after MPI_Init */
  SCR_Init();

  for (int t = 0; t < TIMESTEPS; t++) {
    /* ... Do work ... */

    /* Ask SCR if a checkpoint should be saved (optional) */
    int need_ckpt;
    SCR_Need_checkpoint(&need_ckpt);
    if (need_ckpt)
      checkpoint(t);
  }

  /* Call SCR_Finalize before MPI_Finalize */
  SCR_Finalize();

  MPI_Finalize();

  return 0;
}

void checkpoint(int timestep) {
  /* Define a name for our checkpoint */
  char name[256];
  sprintf(name, "timestep.%d", timestep);

  /* Tell SCR that we are starting a checkpoint phase */
  SCR_Start_output(name, SCR_FLAG_CHECKPOINT);

  int rank;
  MPI_Comm_rank(MPI_COMM_WORLD, &rank);

  /* Define our checkpoint file name */
  char file[256];
  sprintf(file, "%s/rank_%d.ckpt", name, rank);

  /* Register our checkpoint file with SCR,
   * and obtain path we should use to open it */
  char scr_file[SCR_MAX_FILENAME];
  SCR_Route_file(file, scr_file);

  /* Each process will inform SCR whether it wrote
   * its checkpoint successfully */
  int valid = 1;

  /* Use path from SCR to open checkpoint file for writing */
  FILE* fs = fopen(scr_file, "w");
  if (fs != NULL) {
    int rc = fwrite(state, ..., fs);
    if (rc == 0)
      /* Failed to write, mark checkpoint as invalid */
      valid = 0;

    fclose(fs);
  } else {
    /* Failed to open file, mark checkpoint as invalid */
    valid = 0;
  }

  /* Tell SCR that we have finished our checkpoint phase */
  SCR_Complete_output(valid);

  return;
}





Further sections in the user guide give more
details and demonstrate how to perform restart with SCR.
For a description of the API, see SCR API,
and for more detailed instructions on integrating the API, see Integrate SCR.

It may also be instructive to examine the source of the
test_api.c program and other programs in the examples directory.



Final Thoughts

This was a quick introduction to building and running with SCR.
For more information, please look at the more
detailed sections in the rest of this user guide.





            

          

      

      

    

  

    
      
          
            
  
Assumptions

A number of assumptions are made in the SCR implementation.
If any of these assumptions do not hold for an application,
the application may not be able to use certain features of SCR,
or it might not be able to use SCR at all.
If this is the case, or if you have any questions, please notify the SCR developers.
The goal is to expand the implementation to support a large number of applications.


	The code must be an MPI application.


	For best performance, the code must read and write datasets
as a file-per-process in a globally-coordinated fashion.
There is support for reading and writing shared files,
but one cannot utilize the fastest storage methods in that case.
See Section Common configurations for details.


	To use the scalable restart capability,
a job must be restarted with the same number of processes it ran with when it wrote the checkpoint,
and each process must only access the files it wrote during the checkpoint.
Note that this may limit the effectiveness of the library for codes that can restart
from a checkpoint with a different number of processes than were used to write the checkpoint.
Such codes may still benefit from the scalable checkpoint capability,
but they must configure SCR to restart from the parallel file system.


	It must be possible to store the dataset files from all processes in the same directory.
In particular, all files belonging to a given dataset must have distinct names.


	Files cannot contain data that span multiple datasets.
In particular, there is no support for appending data of the
current dataset to a file containing data from a previous dataset.
Each dataset must be self-contained.


	SCR maintains a set of meta data files that it stores in a subdirectory of the directory
containing the application dataset files.
The application must allow for these SCR meta data files to coexist with its own files.


	All files must reside under a top-level directory on the parallel file system
called the “prefix” directory that is specified by the application.
Under that prefix directory, the application may use subdirectory trees.
See Section Control, cache, and prefix directories for details.


	Applications may configure SCR to cache datasets in RAM disk.
One must ensure there is sufficient memory capacity to store the dataset files
after accounting for the memory consumed by the application.
The amount of storage needed depends on the number of cached datasets
and the redundancy scheme that is applied.
See Section Redundancy schemes for details.


	Time limits should be imposed so that the SCR library has sufficient time
to flush files from cache to the parallel file system before the resource allocation expires.
See Section Halt a job for details.







            

          

      

      

    

  

    
      
          
            
  
Concepts

This section discusses concepts one should understand about the SCR library
implementation including how it interacts with file systems.
Terms defined here are used throughout the documentation.


Jobs, allocations, and runs

A long-running application often must be restarted
multiple times in order to execute to completion.
It may be interrupted due to a failure,
or it may be interrupted due to time limits imposed by the resource manager.
To make forward progress despite such interruptions,
an application saves checkpoints during its earlier executions that
are used to restart the application in later executions.
We refer to this sequence of dependent executions
and its checkpoint history as an SCR job or simply a job.

Each execution requires resources that have been granted by the resource manager.
We use the term allocation to refer to an assigned set of compute resources
that are available to the user for a period of time.
A resource manager typically assigns an identifier label to each resource allocation,
which we refer to as the allocation id.
SCR embeds the allocation id in some directory and file names.

Within an allocation, a user may execute an application one or more times.
We call each execution a run.
For MPI applications, each run corresponds to a single invocation
of mpirun or its equivalent.

Note that the term job has different meanings depending on its context.
In addition to referring to a sequence of dependent runs,
we sometimes use the term job to refer to an individual allocation or run
that contributes to such a sequence.

Furthermore, the term job has different definitions in
the context of resource managers and MPI applications.
For example, a SLURM job corresponds to what we refer to as an “allocation”,
and an MPI job corresponds to what we refer to as a “run”.
We define the terms allocation and run to help distinguish between those different meanings.
However, we may also use the term job when the context is clear.



Group, store, and redundancy descriptors

The SCR library must group processes of the parallel job in various ways.
For example, if power supply failures are common,
it is necessary to identify the set of processes that share a power supply.
Similarly, it is necessary to identify all processes that can access a given
storage device, such as an SSD mounted on a compute node.
To represent these groups, the SCR library uses a group descriptor.
Details of group descriptors are given in Group, store, and checkpoint descriptors.

Each group is given a unique name.
The library creates two groups by default: NODE and WORLD.
The NODE group consists of all processes on the same compute node,
and WORLD consists of all processes in the run.
One can define additional groups via configuration files (see Configure a job).

The SCR library must also track details about each class of storage it can access.
For each available storage class, SCR needs to know the associated directory prefix,
the group of processes that share a device, the capacity of the device, and other
details like whether the associated file system can support directories.
SCR tracks this information in a store descriptor.
Each store descriptor refers to a group descriptor,
which specifies how processes are grouped with respect to that class of storage.
For a given storage class, it is assumed that all compute nodes refer
to the class using the same directory prefix.
Each store descriptor is referenced by its directory prefix.

The library creates one store descriptor by default: /dev/shm.
The assumption is made that /dev/shm is mounted as a local file system
on each compute node.
On Linux clusters, /dev/shm is typically tmpfs (RAM disk),
which implements a file system using main memory as the backing storage.
Additional store descriptors can be defined in configuration files (see Configure a job).

Finally, SCR defines redundancy descriptors to associate a redundancy scheme
with a class of storage devices and a group of processes that are likely to fail at the same time.
It also tracks details about the particular redundancy scheme used,
and the frequency with which it should be applied.
Redundancy descriptors reference both store and group descriptors.

The library defines a default redundancy descriptor.
It assumes that processes on the same node are likely to fail at the same time
(compute node failure).
It also assumes that datasets can be cached in /dev/shm,
which is assumed to be storage local to each compute node.
It applies an XOR redundancy scheme using a group size of 8.
Additional redundancy descriptors may be defined in configuration files (see Configure a job).



Control, cache, and prefix directories

SCR manages numerous files and directories to cache datasets and to record its internal state.
There are three fundamental types of directories: control, cache, and prefix directories.
For a detailed illustration of how these files and directories are arranged,
see the example presented in Example of SCR files and directories.

The control directory is where SCR writes files to store its
internal state about the current run.
This directory is expected to be stored in node-local storage.
SCR writes multiple, small files in the control directory,
and it accesses these files frequently.
It is best to configure this directory to be in node-local RAM disk.

To construct the full path of the control directory,
SCR incorporates a control base directory name along with
the user name and allocation id associated with the resource allocation.
This enables multiple users, or multiple jobs by the same user,
to run at the same time without conflicting for the same control directory.
A default control base directory is hard-coded into the SCR library at configure time,
but this value may be overridden at runtime.

SCR can direct the application to write dataset files to subdirectories
within a cache directory.
SCR also stores its redundancy data in these subdirectories.
The storage that hosts the cache directory must be large enough to hold
the data for one or more datasets plus the associated redundancy data.
Multiple cache directories may be utilized in the same run,
which enables SCR to use more than one class of storage
within a run (e.g., RAM disk and SSD).
Cache directories should ideally be located on scalable storage.

To construct the full path of a cache directory,
SCR incorporates a cache base directory name with
the user name and the allocation id associated with the resource allocation.
It is valid for a cache directory to use the same base path as the control directory.
A default cache base directory is hard-coded into the SCR library at configure time,
but this value may be overridden at runtime.

The user must configure the maximum number of datasets
that SCR should keep in each cache directory.
It is up to the user to ensure that the capacity of the device associated with
the cache directory is large enough to hold the specified number of datasets.

SCR refers to each application checkpoint or output set as a dataset.
SCR assigns a unique sequence number to each dataset called the dataset id.
It assigns dataset ids starting from 1 and counts up with each
successive dataset written by the application.
Within a cache directory,
a dataset is written to its own subdirectory called the dataset directory.

Finally, the prefix directory is a directory on the parallel
file system that the user specifies.
SCR copies datasets to the prefix directory
for permanent storage (see Fetch, flush, and scavenge).
The prefix directory should be accessible from all compute nodes,
and the user must ensure that the prefix directory is unique for each job.
For each dataset stored in the prefix directory,
SCR creates and manages a dataset directory.
The dataset directory holds all SCR redundancy files and
meta data associated with a particular dataset.
SCR maintains an index file within the prefix directory,
which records information about each dataset stored there.

Note that the term “dataset directory” is overloaded.
In some cases, we use this term to refer to a directory in cache
and in other cases we use the term to refer to a directory within the prefix directory
on the parallel file system.
In any particular case, the meaning should be clear from the context.



Example of SCR files and directories

To illustrate how files and directories are arranged in SCR,
consider the example shown in Figure Example SCR directories.
In this example, a user named user1
runs a 3-task MPI job with one task per compute node.
The base directory for the control directory is /dev/shm,
the base directory for the cache directory is /ssd,
and the prefix directory is /pscratch/user1/simulation123.
The control and cache directories are storage devices local to the compute node.


[image: ../_images/directories_wide3.png]

Example SCR directories



The full path of the control directory is /dev/shm/user1/scr.5132.
This is derived from the concatenation of the control base directory /dev/shm,
the user name user1, and the allocation id 5132.
SCR keeps files to persist its internal state in the control directory,
including a cindex.scrinfo file as shown.

Similarly, the cache directory is /ssd/user1/scr.5132,
which is derived from the concatenation of the cache base directory /ssd,
the user name user1, and the allocation id 5132.
Within the cache directory, SCR creates a subdirectory for each dataset.
In this example, there are two datasets with ids 5 and 6.
The application dataset files and SCR redundancy files
are stored within their corresponding dataset directory.
On the node running MPI rank 0,
there is one application dataset file rank_0.ckpt,
and numerous SCR metadata files in a hidden .scr subdirectory.

The full path of the prefix directory is /pscratch/user1/simulation123.
This is a path on the parallel file system that is specified by the user.
It is unique to the particular simulation the user is running simulation123.

The prefix directory contains a hidden .scr directory where SCR writes
its index.scr file to record info for each of the datasets (see Manage datasets).
The SCR library writes other files to this hidden directory,
including the halt.scr file (see Halt a job).
Within the .scr directory, SCR also creates a directory
for each dataset named scr.dataset.<id> where <id> is the dataset id.
SCR stores metadata files that are specific to the dataset in these dataset directories
including summary.scr and rank2file files along with redundancy files.

Application files for each dataset are written to their original path within the prefix directory
as the application specified during its call to SCR_Route_file.
In this example, the application stores all files for a particular dataset within its own subdirectory.
There are directories named ckpt.5 and ckpt.6 corresponding to two datasets.
The files from all processes for each dataset are contained within its respective ckpt directory.
Application file names and directory paths can be arbitrary so long as all items are placed within
the prefix directory and item names in each dataset are distinct from names in other datasets.



Redundancy schemes

In practice, it is common for multiple processes to fail at the same time,
but most often this happens because those processes depend on a single, failed component.
It is not common for multiple, independent components to fail simultaneously.
By expressing the groups of processes that are likely to fail at the same time,
the SCR library can apply redundancy schemes to withstand common, multi-process failures.
We refer to a set of processes likely to fail at the same time as a failure group.

SCR must also know which groups of processes share a given storage device.
This is useful so the group can coordinate its actions when accessing the device.
For instance, if a common directory must be created before each process writes a file,
a single process can create the directory and then notify the others.
We refer to a set of processes that share a storage device as a storage group.

SCR defines default failure and storage groups, and if needed,
additional groups can be defined in configuration files (see Group, store, and checkpoint descriptors).
Given definitions of failure and storage groups,
the SCR library implements four redundancy schemes
which trade off performance, storage space, and reliability:


	Single - Each dataset file is written to storage accessible to the local process.


	Partner - Each dataset file is written to storage accessible to the local process,
and a full copy of each file is written to storage accessible to a partner process from
another failure group.


	XOR - Each dataset file is written to storage accessible to the local process,
XOR parity data are computed from dataset files of a set of processes from different
failure groups, and the parity data are stored among the set.


	RS - Each dataset file is written to storage accessible to the local process,
and Reed-Solomon encoding data are computed from dataset files of a set of processes
from different failure groups, and the encoding data are stored among the set.




With Single, SCR writes each dataset file in storage accessible to the local process.
It requires sufficient space to store the maximum dataset file size.
This scheme is fast, but it cannot withstand failures that disable the storage device.
For instance, when using node-local storage,
this scheme cannot withstand failures that disable the node,
such as when a node loses power or its network connection.
However, it can withstand failures that kill the application processes
but leave the node intact, such as application bugs and file I/O errors.

With Partner, SCR writes dataset files to storage accessible to the local process,
and it also copies each dataset file to storage accessible to a partner process
from another failure group.
This scheme is slower than Single, and it requires twice the storage space.
However, it is capable of withstanding failures that disable a storage device.
In fact, it can withstand failures of multiple devices,
so long as a device and the corresponding partner device that holds the copy
do not fail simultaneously.

With XOR, SCR defines sets of processes
where members within a set are selected from different failure groups.
The processes within a set collectively compute XOR parity data which are
stored in files along side the application dataset files.
This algorithm is based on the work found in [Gropp],
which in turn was inspired by RAID5 [Patterson].
The XOR scheme can withstand multiple failures so long as
two processes from the same set do not fail simultaneously.

Computationally, XOR is more expensive than Partner, but it requires less storage space.
Whereas Partner must store two full dataset files,
XOR stores one full dataset file plus one XOR parity segment,
where the segment size is roughly \(1/(N-1)\) times the size of
a dataset file for a set of size \(N\).
Although XOR requires more computation,
it can be be faster than Partner when storage bandwidth
is a performance bottleneck since XOR writes less data.

With RS, like XOR, SCR defines sets of processes
where members within a set are selected from different failure groups.
The processes within a set collectively compute Reed-Solomon encoding data which are
stored in files along side the application dataset files.
The RS scheme can require more computation and storage space than XOR,
but it can tolerate up to a configurable number of \(k\) failures per set,
where \(1 <= k < N\).
The RS encoding data scales as \(k/(N-k)\)
times the size of a dataset file for a given value \(k\) and a set of size \(N\).
By default, RS can recover up to \(k = 2\) failures per set.

For both XOR and RS, larger sets require less storage,
but they also increase the probability that a given set
will suffer multiple failures simultaneously.
Larger sets may also increase the cost of recovering files in the event of a failure.
The set size \(N\) can be adjusted with the SCR_SET_SIZE parameter.
The number of failures \(k\) can be adjusted with the SCR_SET_FAILURES parameter.


Summary of redundancy schemes assuming each process writes \(B\) bytes and is grouped with other processes into a set of size \(N\)






	Redundancy scheme

	Storage requirements per process

	Maximum failures per set





	Single

	\(B\)

	\(0\)



	Partner

	\(B * 2\)

	\(1+\)



	XOR

	\(B * N / (N - 1)\)

	\(1\)



	RS

	\(B * N / (N - k)\)

	\(k\) where \(1 <= k < N\)








[Patterson]
“A Case for Redundant Arrays of Inexpensive Disks (RAID)”, D. Patterson, G. Gibson, and R. Katz, Proc. of 1988 ACM SIGMOD Conf. on Management of Data, 1988, http://web.mit.edu/6.033/2015/wwwdocs/papers/Patterson88.pdf.




[Gropp]
“Providing Efficient I/O Redundancy in MPI Environments”, William Gropp, Robert Ross, and Neill Miller, Lecture Notes in Computer Science, 3241:7786, September 2004. 11th European PVM/MPI Users Group Meeting, 2004, http://www.mcs.anl.gov/papers/P1178.pdf.







Scalable restart

So long as a failure does not violate the redundancy scheme,
a job can restart within the same resource allocation using a cached checkpoint.
This saves the cost of writing checkpoint files out to the parallel file
system only to read them back during the restart.
In addition, SCR provides support for the use of spare nodes.
A job can allocate more nodes than it needs
and use the extra nodes to fill in for any failed nodes during a restart.
The process of restarting a job from a cached checkpoint is referred to as a scalable restart.
SCR includes a set of scripts which encode much of the scalable restart logic (see Run a job).

Upon encountering a failure,
SCR relies on the MPI library, the resource manager, or some other external service
to kill the current run.
After the run is killed,
and if there are sufficient healthy nodes remaining,
the same job can be restarted within the same allocation.
In practice, such a restart typically amounts to issuing another
mpirun in the job batch script.

Of the set of nodes used by the previous run,
the restarted run should try to use as many of the same nodes as it can
to maximize the number of files available in cache.
A given MPI rank in the restarted run does not need to run
on the same node that it ran on in the previous run.
SCR distributes cached files among processes according to
the process mapping of the restarted run.

By default, SCR inspects the cache for existing checkpoints when a run starts.
It attempts to rebuild all datasets in cache,
and then it attempts to restart the job from the most recent checkpoint.
If a dataset fails to rebuild, SCR deletes it from cache.

An example restart scenario is illustrated in Figure Scalable restart
in which a 4-node job using the Partner scheme allocates 5 nodes
and successfully restarts within the allocation after a node fails.
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Example restart after a failed node with Partner





Catastrophic failures

There are some failures from which the SCR library cannot recover a cached checkpoint.
In such cases, SCR falls back to the most recent checkpoint written to the parallel file system.
Such failures are called catastrophic failures,
and they include the following examples:


	Multiple node failure which violates the redundancy scheme.
If multiple nodes fail in a pattern which violates the cache redundancy scheme,
data are irretrievably lost.


	Failure during a checkpoint.
Due to cache size limitations, some applications can only fit one
checkpoint in cache at a time.
For such cases, a failure may occur after the library has deleted the previous checkpoint
but before the next checkpoint has completed.
In this case, there is no valid checkpoint in cache to recover.


	Failure of the node running the job batch script.
The logic at the end of the allocation to scavenge the latest checkpoint from
cache to the parallel file system executes as part of the job batch script.
If the node executing this script fails,
the scavenge logic will not execute and the allocation will terminate without copying
the latest checkpoint to the parallel file system.


	Parallel file system outage.
If the application fails when writing output due to an outage of the parallel file system,
the scavenge logic may also fail when it attempts to copy files to the parallel file system.




There are other catastrophic failure cases not listed here.

Checkpoints must be written to the parallel file system with some moderate
frequency so as not to lose too much work in the event of a catastrophic failure.
Section Fetch, flush, and scavenge provides details on how to configure SCR to make occasional
writes to the parallel file system.

By default, the current implementation stores only the most recent checkpoint in cache.
One can change the number of checkpoints stored in cache by setting
the SCR_CACHE_SIZE parameter.
If space is available, it is recommended to increase this value to at least 2.



Fetch, flush, and scavenge

SCR manages the transfer of datasets between the prefix directory
on the parallel file system and the cache.
We use the term fetch to refer to the action of copying
a dataset from the parallel file system to cache.
When transferring data from cache to the parallel file system,
there are two terms used: flush and scavenge.
Under normal circumstances, the library directly copies files
from cache to the parallel file system,
and this direct transfer is known as a flush.
However, sometimes a run is killed before the library can complete this transfer.
In these cases, a set of SCR commands is executed after the final run to ensure that the
latest checkpoint and any output datasets are copied to the parallel file system before the allocation expires.
We say that these scripts scavenge those datasets.

Each time an SCR job starts,
SCR first inspects the cache and attempts to rebuild files for a scalable restart
as discussed in Scalable restart.
If the cache is empty or the rebuild fails,
SCR attempts to load a checkpoint from the prefix directory.
SCR reads the index file and attempts to load the checkpoint that is marked as current.
If no checkpoint is designated as current, SCR attempts to load the most recent checkpoint.
When restarting from a checkpoint, SCR records whether the restart attempt succeeds or fails in the index file.
SCR does not attempt to load a checkpoint that is marked as being incomplete
nor does SCR attempt to load a checkpoint for which a previous restart attempt has failed.
If SCR attempts but fails to load a checkpoint, it prints an error and
it will attempt to load the next most recent checkpoint if one is available.

By default, SCR fetches the checkpoint into cache and applies a redundancy scheme.
This is useful on systems where failures are likely,
since SCR may be able to restart the application from the cached checkpoint
if the application fails before it writes its next checkpoint.
One can configure SCR to avoid copying the checkpoint to
cache by setting the SCR_FETCH_BYPASS parameter to 0.
This may provide for faster restart when reading from the cache is slow.

An application may elect not to use SCR for restart.
In this case, one should set the SCR_FETCH parameter to 0.
If the fetch is disabled, the application is responsible for
identifying and reading its checkpoint.

To withstand catastrophic failures,
it is necessary to write checkpoints out to the parallel file system with some moderate frequency.
In the current implementation,
the SCR library writes a checkpoint out to the parallel file system after every 10 checkpoints.
This frequency can be configured by setting the SCR_FLUSH parameter.
When this parameter is set, SCR decrements a counter with each successful checkpoint.
When the counter hits 0, SCR writes the current checkpoint out to the file system and resets the counter
to the value specified in SCR_FLUSH.
SCR can preserve this counter between restarts
such that it is possible to maintain periodic checkpoint writes across runs.
Set SCR_FLUSH to 0 to disable periodic writes in SCR.
If an application disables the periodic flush feature,
the application is responsible for writing occasional checkpoints to the parallel file system.





            

          

      

      

    

  

    
      
          
            
  
Build SCR


Dependencies

SCR has several required dependencies.
Others are optional, and if not available,
corresponding SCR functionality is disabled.

Required:


	C and C++ compilers


	CMake, Version 3.14.5+


	MPI 3.0+




Optional:


	Fortran compiler (for Fortran bindings)


	pdsh (for scalable restart and scavenge) (https://github.com/chaos/pdsh)


	libyogrt (for time remaining in a job allocation) (https://github.com/llnl/libyogrt)


	MySQL (for logging SCR activities)




To simplify the install process,
one can use CMake to build a release tarball or use Spack.

The CMake and Spack sections below assume that one is installing SCR on a system with
existing compilers, a resource manager (like SLURM or LSF), and an MPI environment.
These base software packages are typically preinstalled and configured
for users by the support staff of HPC clusters.



CMake

SCR requires CMake version 3.14.5 or higher.
The SCR build uses the CMake FindMPI module to link with MPI.
This module looks for the standard mpicc compiler wrapper,
which must be in your PATH.

One can download an SCR release tarball from the GitHub release page [https://github.com/llnl/scr/releases].
To build SCR from a release tarball:

wget https://github.com/LLNL/scr/releases/download/v3.0/scr-v3.0.tgz
tar -zxf scr-v3.0.tgz
cd scr-v3.0

mkdir build
cd build
cmake -DCMAKE_INSTALL_PREFIX=../install ..
make -j install





Some common CMake command line options:


	-DCMAKE_INSTALL_PREFIX=[path]: Place to install the SCR library


	-DCMAKE_BUILD_TYPE=[Debug/Release]: Build with debugging or optimizations, defaults to Release


	-DBUILD_SHARED_LIBS=[ON/OFF]: Whether to build shared libraries, defaults to ON


	-DSCR_RESOURCE_MANAGER=[SLURM/FLUX/APRUN/LSF/NONE] : Resource manager for job allocations, defaults to SLURM


	-DSCR_CNTL_BASE=[path] : Path to SCR Control directory, defaults to /dev/shm


	-DSCR_CACHE_BASE=[path] : Path to SCR Cache directory, defaults to /dev/shm


	-DSCR_CONFIG_FILE=[path] : Path to SCR system configuration file, defaults to <install>/etc/scr.conf


	-DSCR_FILE_LOCK=[FLOCK/FCNTL/NONE] : Specify type of file locking to use, defaults to FLOCK




For setting the default logging parameters:


	-DSCR_LOG_ENABLE=[0/1] : Whether to enable SCR logging of any type (1) or not (0), defaults to 0


	-DSCR_LOG_SYSLOG_ENABLE=[0/1] : Whether to enable SCR logging via syslog (1) or not (0), defaults to 1


	-DSCR_LOG_SYSLOG_FACILITY=[facility] : Facility for syslog messages (see man openlog), defaults to LOG_LOCAL7


	-DSCR_LOG_SYSLOG_LEVEL=[level] : Level for syslog messages (see man openlog), defaults to LOG_INFO


	-DSCR_LOG_SYSLOG_PREFIX=[str] : Prefix string to prepend to syslog messages, defaults to SCR


	-DSCR_LOG_TXT_ENABLE=[0/1] : Whether to enable SCR logging to a text file (1) or not (0), defaults to 1




One can disable portions of the SCR build if they are not needed:


	-DENABLE_FORTRAN=[ON/OFF] : Whether to build library for Fortran bindings, defaults to ON


	-DENABLE_FORTRAN_TRAILING_UNDERSCORES=[AUTO/ON/OFF] : Whether to append underscores to symbol names in the Fortran bindings, defaults to AUTO


	-DENABLE_EXAMPLES=[ON/OFF] : Whether to build programs in examples directory, defaults to ON


	-DENABLE_TESTS=[ON/OFF] : Whether to support make check tests, defaults to ON


	-DENABLE_PTHREADS=[ON/OFF] : Whether to enable pthreads support for file transfers, defaults to ON


	-DENABLE_IBM_BBAPI=[ON/OFF] : Whether to enable IBM Burst Buffer support for file transfers, defaults to OFF


	-DENABLE_CRAY_DW=[ON/OFF] : Whether to enable Cray DataWarp support for file transfers, defaults to OFF


	-DENABLE_PDSH=[ON/OFF] : Whether to use pdsh to check node health and scavenge files, defalts to ON


	-DBUILD_PDSH=[ON/OFF]: CMake can automatically download and build the PDSH dependency, defaults to OFF


	-DWITH_PDSH_PREFIX=[path to PDSH]: Path to an existing PDSH installation (should not be used with BUILD_PDSH)


	-DENABLE_YOGRT=[ON/OFF] : Whether to use libyogrt for determining allocation end time, defaults to ON


	-DWITH_YOGRT_PREFIX:PATH=[path to libyogrt]


	-DENABLE_MYSQL=[ON/OFF] : Whether to use MySQL for logging, defaults to OFF


	-DWITH_MYSQL_PREFIX=[path to MySQL]






Spack

If you use the Spack [https://github.com/spack/spack] package manager,
SCR and many of its dependencies have corresponding packages.

Before installing SCR with Spack,
one should first properly configure packages.yaml.
In particular, SCR depends on the system resource manager and MPI library,
and one should define entries for those in packages.yaml.

By default, Spack attempts to build all dependencies for SCR,
including packages such as SLURM, MPI, and OpenSSL that are already installed on most HPC systems.
It is recommended to use the system-installed software when possible.
This ensures that the resulting SCR build actually works on the target system,
and it can significantly reduce the build time.

Spack uses its packages.yaml file to locate external packages.
Full information about packages.yaml can be found
in the Spack documentation [https://spack.readthedocs.io/en/latest/configuration.html].

At minimum, it is important to register the system MPI library and the system resource manager.
Other packages can be defined to accelerate the build.
The following shows example entries for packages.yaml.
One must modify these example entries to use the proper versions,
module names, and paths for the target system:

packages:
  all:
    providers:
      mpi: [mvapich2,openmpi,spectrum-mpi]

  # example entry for MVAPICH2 MPI, accessed by a module named mvapich2
  mvapich2:
    buildable: false
    externals:
    - spec: mvapich2
      modules:
      - mvapich2

  # example entry for Open MPI
  openmpi:
    buildable: false
    externals:
    - spec: openmpi@4.1.0
      prefix: /opt/openmpi-4.1.0

  # example entry for IBM Spectrum MPI
  spectrum-mpi:
    buildable: false
    externals:
    - spec: spectrum-mpi
      prefix: /opt/ibm/spectrum_mpi

  # example entry for IBM LSF resource manager
  lsf:
    buildable: false
    externals:
    - spec: lsf@10.1
      prefix: /opt/ibm/spectrumcomputing/lsf/10.1

  # example entry for SLURM resource manager
  slurm:
    buildable: false
    externals:
    - spec: slurm@20
      prefix: /usr

  openssl:
    externals:
    - spec: openssl@1.0.2
      prefix: /usr

  libyogrt:
    externals:
    - spec: libyogrt scheduler=lsf
      prefix: /usr
    - spec: libyogrt scheduler=slurm
      prefix: /usr





The packages key declares the following block as a set of package descriptions.
The following descriptions tell Spack how to find items that already installed on the system.


	The providers key specifies that one of three different MPI versions are available, MVAPICH2, Open MPI, or IBM Spectrum MPI.


	mvapich2: declares that MVAPICH2 is available, and the location is defined in a mvapich2 module file.


	openmpi: declares that Open MPI is installed in the system at the location specified by prefix, and the buildable: false line declares that Spack should always use that version of MPI rather than try to build its own. This description addresses the common situation where MPI is customized and optimized for the local system, and Spack should never try to compile a replacement.


	spectrum-mpi: declares that Spectrum MPI is available.


	lsf: declares that if LSF is needed (e.g. to use scheduler=lsf) the libraries can be found at the specified prefix.


	slurm: declares that if SLURM is needed (e.g. to use scheduler=slurm) the libraries can be found at the specified prefix.


	openssl: declares that openssl version 1.0.2 is installed on the system and that Spack should use that if it satisfies the dependencies required by any spack-installed packages, but if a different version is requested, Spack should install its own version.


	libyogrt: declares that libyogrt is installed, but Spack may decide to build its own version. If scheduler=slurm or scheduler=lsf is selected, use the version installed under /usr, otherwise build from scratch using the selected scheduler.




After configuring packages.yaml, one can install SCR.

For SLURM systems, SCR can be installed with:

spack install scr@3.0 resource_manager=SLURM





For LSF, systems, SCR can be installed with:

spack install scr@3.0 resource_manager=LSF





The SCR Spack package provides other variants that may be useful.
To see the full list, type:

spack info scr









            

          

      

      

    

  

    
      
          
            
  
SCR API

SCR is designed to support MPI applications that write
application-level checkpoint and output datasets.
All processes must access data in a globally-coordinated fashion,
and in fact, many SCR calls are implicit collectives over all processes in MPI_COMM_WORLD.
In a given dataset, each process may write zero or more files,
but the current implementation is most efficient when all processes write the same amount of data.
Multiple processes can access a given file, though significant performance is gained
by applications that use file-per-process access patterns,
where each file is only accessed by a single “owner” process.

Parallel file systems allow any process in an MPI job to
read/write any byte of a file at any time.
However, most applications do not require this full generality.
SCR supplies API calls that enable the application to specify
limits on its data access in both time and space.
Start and complete calls indicate when an application needs to write or read its data.
Files in the dataset cannot be accessed outside of these markers.
Additionally, for best performance, each MPI process may only access files written
by itself or another process having the same MPI rank in a previous run.
In this mode, an MPI process cannot access files written by a process having a different MPI rank.
SCR can provide substantial improvements in I/O performance by
enabling an application to specify its limits on when and where it needs to access its data.

The API is designed to be simple, scalable, and portable.
It consists of a small number of function calls to wrap existing application I/O logic.
Unless otherwise stated, SCR functions are collective,
meaning all processes in MPI_COMM_WORLD must call the function synchronously.
The underlying implementation may or may not be synchronous,
but to be portable, an application must treat a collective call as though it is synchronous.
This constraint enables the SCR implementation to utilize the full resources of the job
in a collective manner to optimize performance at critical points
such as computing redundancy data.

In the sections below, we show the function prototypes for C and Fortran.
Applications written in C should include scr.h,
and Fortran applications should include scrf.h.
Unless otherwise noted, all functions return SCR_SUCCESS if successful.

For Python applications, an scr.py Python module wraps the functions of the C interface.
This module is located in the share/scr/python directory of an SCR installation.
A README.md file and an scr_example.py program in the same directory
illustrate how one uses the scr.py module.
Python users should also be familiar with the API documentation in this section.


Startup and Shutdown API


SCR_Init

int SCR_Init(void);





SCR_INIT(IERROR)
  INTEGER IERROR





Initialize the SCR library.
This function must be called after MPI_Init.
A process should only call SCR_Init once during its execution.
It is not valid to call any SCR function before calling SCR_Init, except for SCR_Config.

The SCR library applies its configuration settings during SCR_Init,
so any SCR parameters must be specified before calling SCR_Init.
On runs restarted within an allocation, SCR_Init rebuilds any cached datasets.



SCR_Finalize

int SCR_Finalize(void);





SCR_FINALIZE(IERROR)
  INTEGER IERROR





Shut down the SCR library.
This function must be called before MPI_Finalize.
A process should only call SCR_Finalize once during its execution.

If SCR_FLUSH is enabled,
SCR_Finalize flushes any datasets to the prefix directory if necessary.
It updates the halt file to indicate that SCR_Finalize has been called.
This halt condition prevents the job from restarting (see Halt a job).



SCR_Config

const char* SCR_Config(const char* config);
const char* SCR_Configf(const char* format, ...);





SCR_CONFIG(CONFIG, VAL, IERROR)
  CHARACTER*(*) CONFIG , VAL
  INTEGER IERROR





Configure the SCR library.
Most of the SCR configuration parameters listed in Configure a job can be set, queried,
and unset at run time using SCR_Config.
The application can make multiple calls to SCR_Config, including for the same SCR configuration parameter.
All calls to SCR_Config to set or unset parameter values must occur before the application calls SCR_Init.
One may call SCR_Config to query parameter values before and after SCR_Init has been called.
This function is collective, and all processes must provide identical values for config.

There are two forms of SCR configuration parameters:
a simple form that consists of a single key/value pair
and a multi-item form that consists of a parent key/value pair and set of child key/value pairs.

To set a simple parameter,
one specifies a parameter name and its value in the form of a key=value string as the config argument.
For example, passing the string SCR_FLUSH=10 sets SCR_FLUSH to the value of 10. The = character
is allowed as part of the value if the value is a string.  For example, passing the string
SCR_PREFIX="/my/dir/with/=/sign" sets SCR_PREFIX to the value of “/my/dir/with/=/sign”.

If one sets the same parameter with multiple calls to SCR_Config,
SCR applies the most recent value.
When setting a parameter, for C applications, SCR_Config always returns NULL.
For Fortran applications, IERROR is always set to SCR_SUCCESS.

To query the value of a simple parameter, one specifies just the parameter name as the string in config.
For example, one can specify the string SCR_FLUSH to query its current value.
When querying a value, for C applications,
the call allocates and returns a pointer to a string holding the value of the parameter.
The caller is responsible for calling free to release the returned string.
If the parameter has not been set, NULL is returned.
For Fortran applications, the value is returned as a string in the VAL argument.

To unset the value of a simple parameter, one specifies the parameter name with an empty value
in the form of a key= string as the config argument.
For example, to unset the value assigned to SCR_FLUSH, specify the string SCR_FLUSH=.
Unsetting a parameter removes any value that was assigned by a prior call to SCR_Config,
but it does not unset the parameter value that has been set through other means,
like an environment variable or in a configuration file (see Configure a job).
When unsetting a value, for C applications, SCR_Config always returns NULL.
For Fortran applications, IERROR is always set to SCR_SUCCESS.

Multi-item parameters like CKPT can be set using a
sequence of key=value pairs that are separated by spaces.
For example, to define a CKPT redundancy descriptor,
one can pass a string such as CKPT=0 TYPE=XOR SET_SIZE=16.

To query a subvalue of a multi-item parameter, one must specify the parent level key=value pair followed
by the name of the child key being queried.
For instance, to get the type of the redundancy scheme of redundancy descriptor 0,
one can specify the string CKPT=0 TYPE.

For C applications, SCR_Configf provides a formatted string variant of SCR_Config.
The caller can use printf-style formatting patterns to define the string, as in SCR_Configf("SCR_FLUSH=%d", 10).
This call otherwise behaves the same as SCR_Config.




File Routing API

When files are under control of SCR,
they may be written to or exist on different levels of the storage hierarchy
at different points in time.
For example, a checkpoint might be written first to the RAM disk of
a compute node and then later transferred to the parallel file system by SCR.
In order for an application to discover where
a file should be written to or read from,
one calls the SCR_Route_file routine.

The precise behavior of SCR_Route_file varies depending on the current state of SCR.
Depending on the calling context, sections below extend the definition as described in this section.
This section describes general information about SCR_Route_file that applies in all contexts.


SCR_Route_file

int SCR_Route_file(const char* name, char* file);





SCR_ROUTE_FILE(NAME, FILE, IERROR)
  CHARACTER*(*) NAME, FILE
  INTEGER IERROR





A process calls SCR_Route_file to obtain the
full path and file name it must use to access a file.
A call to SCR_Route_file is local to the calling process;
it is not a collective call.

The name of the file that the process intends to access must be passed in the name argument.
This must be a relative or absolute path that specifies the location of the file on the parallel file system.
If given a relative path, SCR prepends the current working directory at the time SCR_Route_file is called.
This path must resolve to a location under the prefix directory.

A pointer to a character buffer of at least SCR_MAX_FILENAME bytes must be passed in file.
When a call to SCR_Route_file returns,
the full path and file name to access the file named in name is written
to the buffer pointed to by file.
The process must use the character string returned in file to access the file.

If SCR_Route_file is called outside of output and restart phases, i.e., outside of a Start/Complete pair,
the string in name is copied verbatim into the output buffer file.

The application does not need to create any directories in the path returned in file.
The SCR library creates any needed directories before returning from SCR_Route_file.

In the current implementation,
SCR only changes the directory portion of name when storing files in cache.
It extracts the base name of the file by removing any directory components in name.
Then it prepends a cache directory to the base file name
and returns the full path and file name in file.




Checkpoint/Output API

Here we describe the SCR API functions that are used for writing
checkpoint and output datasets.
In addition to checkpoints, it may be useful for an application to write its output datasets
through SCR to utilize asynchronous transfers to the parallel file system.
This lets the application return to computation while the SCR library migrates
the dataset to the parallel file system in the background.

Using a combination of bit flags, a dataset can be designated as a checkpoint, output, or both.
The checkpoint property means that the dataset can be used to restart the application.
The output property means that the dataset must be written to the prefix directory.

If a user specifies that a dataset is a checkpoint only,
then SCR may delete an older checkpoint to store a more recent checkpoint
without having first copied the older checkpoint to the prefix directory.
SCR may thus discard some checkpoints from cache without persisting them to the parallel file system.
In cases where one can write checkpoints to cache much faster than one can write checkpoints to the parallel file system,
discarding defensive checkpoints in this way allows the application to checkpoint more frequently,
which can significantly improve run time efficiency.

If a user specifies that a dataset is for output only,
the dataset will first be cached and protected with its corresponding redundancy scheme.
Then the dataset will be copied to the prefix directory.
When the transfer to the prefix directory is complete,
the cached copy of the output dataset can be deleted.

If the user specifies that the dataset is both a checkpoint and output,
then SCR uses a hybrid approach.
The dataset is copied to the prefix directory as output,
but it is also kept in cache according to the
policy set in the configuration for checkpoints.
For example, if the user configures SCR to keep three checkpoints in cache,
then the dataset will be preserved in cache until it is replaced
by a newer checkpoint after three more checkpoint phases.


SCR_Need_checkpoint

int SCR_Need_checkpoint(int* flag);





SCR_NEED_CHECKPOINT(FLAG, IERROR)
  INTEGER FLAG, IERROR





Since the failure frequency and the cost of checkpointing vary across platforms,
SCR_Need_checkpoint provides a portable way for an application
to determine whether a checkpoint should be taken.
This function is passed a pointer to an integer in flag.
Upon returning from SCR_Need_checkpoint,
flag is set to the value 1 if a checkpoint should be taken,
and it is set to 0 otherwise.
The call returns the same value in flag on all processes.

Various configuration settings determine the conditions
in which SCR_Need_checkpoint sets flag to 1.
See SCR_CHECKPOINT_INTERVAL, SCR_CHECKPOINT_SECONDS,
and SCR_CHECKPOINT_OVERHEAD in Configure a job.



SCR_Start_output

int SCR_Start_output(char* name, int flags);





SCR_START_OUTPUT(NAME, FLAGS, IERROR)
  CHARACTER*(*) NAME
  INTEGER FLAGS, IERROR





Inform SCR that a new output phase is about to start.
A process must call this function before it creates any files belonging to the dataset.
SCR_Start_output must be called by all processes,
including processes that do not write files as part of the dataset.

The caller can provide a name for the dataset in name.
It is recommended to define names that are user-friendly,
since an end user may need to read and type these names at times.
The name value must be less than SCR_MAX_FILENAME characters.
All processes must provide identical values in name.
In C, the application may pass NULL for name
in which case SCR generates a default name for the dataset based on its internal dataset id.

The dataset can be output, a checkpoint, or both.
The caller specifies these properties using
SCR_FLAG_OUTPUT and SCR_FLAG_CHECKPOINT bit flags.
Additionally, a SCR_FLAG_NONE flag is defined for initializing variables.
In C, these values can be combined with the | bitwise OR operator.
In Fortran, these values can be added together using the + sum operator.
Note that with Fortran, the values should be used at most once in the addition.
All processes must provide identical values in flags.

This function should be called as soon as possible when initiating a new output dataset.
The SCR implementation uses this call as the starting point to time the cost of the
checkpoint in order to optimize the checkpoint frequency via SCR_Need_checkpoint.

Each call to SCR_Start_output must be followed by a corresponding call
to SCR_Complete_output.

In the current implementation, SCR_Start_output holds all processes
at an MPI_Barrier to ensure that all processes are ready to start the
output before it deletes cached files from a previous checkpoint.



SCR_Route_file

int SCR_Route_file(const char* name, char* file);





SCR_ROUTE_FILE(NAME, FILE, IERROR)
  CHARACTER*(*) NAME, FILE
  INTEGER IERROR





A process must call SCR_Route_file for each file it writes
as part of the output dataset.
It is valid for a process to call SCR_Route_file multiple times for the same file.

When called within an output phase, between SCR_Start_output and SCR_Complete_output,
SCR_Route_file registers the file as part of the output dataset.

A process does not need to create any directories listed in the string returned in file.
The SCR implementation creates any necessary directories before it returns from SCR_Route_file.
After returning from SCR_Route_file, the process may create and open the target file for writing.



SCR_Complete_output

int SCR_Complete_output(int valid);





SCR_COMPLETE_OUTPUT(VALID, IERROR)
  INTEGER VALID, IERROR





Inform SCR that all files for the current dataset output are complete (i.e., done writing and closed)
and whether they are valid (i.e., written without error).
A process must close all files in the dataset before calling SCR_Complete_output,
and it may no longer access its dataset files upon calling SCR_Complete_output.
SCR_Complete_output must be called by all processes,
including processes that did not write any files as part of the output.

The parameter valid should be set to 1 either if the calling process wrote
all of its files successfully or if it wrote no files during the output phase.
Otherwise, the process should call SCR_Complete_output with valid set to 0.
SCR determines whether all processes wrote their output files successfully.
SCR_Complete_output only returns SCR_SUCCESS if all processes called with valid set to 1,
meaning that all processes succeeded in their output.
The call returns the same value on all processes.

Each call to SCR_Complete_output must be preceded by a corresponding call
to SCR_Start_output.
The SCR implementation uses this call as the stopping point to time the cost of the checkpoint
that started with the preceding call to SCR_Start_output.

In the current implementation,
SCR applies the redundancy scheme during SCR_Complete_output.
The dataset is then flushed to the prefix directory if needed.




Restart API

Here we describe the SCR API functions used for restarting applications.


SCR_Have_restart

int SCR_Have_restart(int* flag, char* name);





SCR_HAVE_RESTART(FLAG, NAME, IERROR)
  INTEGER FLAG
  CHARACTER*(*) NAME
  INTEGER IERROR





This function indicates whether SCR has a checkpoint available for the application to read.
This function is passed a pointer to an integer in flag.
Upon returning from SCR_Have_restart,
flag is set to the value 1 if a checkpoint is available,
and it is set to 0 otherwise.
The call returns the same value in flag on all processes.

A pointer to a character buffer of at least SCR_MAX_FILENAME bytes can be passed in name.
If there is a checkpoint, and if that checkpoint was assigned a name when it was created,
SCR_Have_restart returns the name of that checkpoint in name.
The value returned in name is the same string that was passed to SCR_Start_output
when the checkpoint was created.
The same value is returned in name on all processes.
In C, one may optionally pass NULL to this function to avoid returning the name.



SCR_Start_restart

int SCR_Start_restart(char* name);





SCR_START_RESTART(NAME, IERROR)
  CHARACTER*(*) NAME
  INTEGER IERROR





This function informs SCR that a restart operation is about to start.
A process must call this function before it opens any files belonging to the restart.
SCR_Start_restart must be called by all processes,
including processes that do not read files as part of the restart.

SCR returns the name of the loaded checkpoint in name.
A pointer to a character buffer of at least SCR_MAX_FILENAME bytes can be passed in name.
The value returned in name is the same string that was passed to SCR_Start_output
when the checkpoint was created.
The same value is returned in name on all processes.
In C, one may optionally pass NULL to this function to avoid returning the name.

One may only call SCR_Start_restart
when SCR_Have_restart indicates that there is a checkpoint to read.
SCR_Start_restart returns the same value in name as the preceding call to SCR_Have_restart.

Each call to SCR_Start_restart must be followed by a corresponding call
to SCR_Complete_restart.



SCR_Route_file

int SCR_Route_file(const char* name, char* file);





SCR_ROUTE_FILE(NAME, FILE, IERROR)
  CHARACTER*(*) NAME, FILE
  INTEGER IERROR





A process must call SCR_Route_file for each file it reads during restart.
It is valid for a process to call SCR_Route_file multiple times for the same file.

When called within a restart phase, between SCR_Start_restart and SCR_Complete_restart,
SCR checks whether the file exists and is readable.
In this mode, SCR_Route_file returns an error code if the file does not exist or is not readable.

It is recommended to provide the relative or absolute path to the file
under the prefix directory in name.
However, for backwards compatibility,
the caller may provide only a file name in name,
even if prepending the current working directory to the file name
does not resolve to the correct path to the file on the parallel file system.
Using just the file name, SCR internally looks up the full path to the file
using SCR metadata for the currently loaded checkpoint.
This usage is deprecated, and it may be not be supported in future releases.



SCR_Complete_restart

int SCR_Complete_restart(int valid);





SCR_COMPLETE_RESTART(VALID, IERROR)
  INTEGER VALID, IERROR





This call informs SCR that the process has finished reading its checkpoint files.
A process must close all restart files before calling SCR_Complete_restart,
and it may no longer access its restart files upon calling SCR_Complete_restart.
SCR_Complete_restart must be called by all processes,
including processes that did not read any files as part of the restart.

The parameter valid should be set to 1 if either the calling process read
all of its files successfully or it read no files as part of the restart.
Otherwise, the process should call SCR_Complete_restart with valid set to 0.
SCR determines whether all processes read their checkpoint files
successfully based on the values supplied in the valid parameter.
SCR_Complete_restart only returns SCR_SUCCESS if
all processes called with valid set to 1,
meaning that all processes succeeded in their restart.
The call returns the same value on all processes.

If the restart failed on any process, SCR loads the next most recent checkpoint,
and the application can call SCR_Have_restart to determine whether a new checkpoint is available.
An application can loop until it either successfully restarts from a checkpoint
or it exhausts all known checkpoints.

Each call to SCR_Complete_restart must be preceded by a corresponding call
to SCR_Start_restart.




General API


SCR_Get_version

char* SCR_Get_version(void);





SCR_GET_VERSION(VERSION, IERROR)
  CHARACTER*(*) VERSION
  INTEGER IERROR





This function returns a string that indicates the version number
of SCR that is currently in use.
The caller must not free the returned version string.



SCR_Should_exit

int SCR_Should_exit(int* flag);





SCR_SHOULD_EXIT(FLAG, IERROR)
  INTEGER FLAG, IERROR





SCR_Should_exit provides a portable way for an application
to determine whether it should halt its execution.
This function is passed a pointer to an integer in flag.
Upon returning from SCR_Should_exit,
flag is set to the value 1 if the application should stop,
and it is set to 0 otherwise.
The call returns the same value in flag on all processes.
It is recommended to call this function after each checkpoint.

It is critical for a job to stop early enough to leave time to copy datasets
from cache to the prefix directory before the allocation expires.
One can configure how early the job should exit within its allocation
by setting the SCR_HALT_SECONDS parameter.

This call also enables a running application to react to external commands.
For instance, if the application has been instructed to halt using the scr_halt command,
then SCR_Should_exit relays that information.




Dataset Management API

SCR provides functions to manage existing datasets.
These functions take a name argument,
which corresponds to the same name the application assigned to the dataset
when it called SCR_Start_output.


SCR_Current

int SCR_Current(const char* name);





SCR_CURRENT(NAME, IERROR)
  CHARACTER*(*) NAME
  INTEGER VALID, IERROR





There are two reasons an application might call SCR_Current:
to request a particular checkpoint before calling the Restart API,
and to inform SCR about which checkpoint the application loaded if it does not call the Restart API.

An application can call SCR_Current to set the current
marker within the SCR index file before it calls SCR_Have_restart.
Any cached datasets that were created after the named checkpoint are deleted from cache.
SCR will then load the specified checkpoint to restart the application.

For applications that opt to not call the SCR Restart API,
it is recommended to call SCR_Current to notify SCR about which checkpoint it loaded.
The application should pass the name of the checkpoint it restarted from in the name argument.
This enables SCR to initialize its internal state to properly order
any new datasets that the application creates after it restarts.



SCR_Delete

int SCR_Delete(const char* name);





SCR_DELETE(NAME, IERROR)
  CHARACTER*(*) NAME
  INTEGER VALID, IERROR





Instruct SCR to delete a dataset.
The application provides the name of the dataset to be deleted in the name argument.
SCR deletes all application files and its own internal metadata associated
with that dataset from both the prefix directory and cache.
SCR also deletes any directories that become empty as a result of deleting the
dataset files up to the SCR prefix directory.



SCR_Drop

int SCR_Drop(const char* name);





SCR_DROP(NAME, IERROR)
  CHARACTER*(*) NAME
  INTEGER VALID, IERROR





Instruct SCR to drop an entry for a dataset from the SCR index file.
SCR removes the entry for that dataset, but it does not delete any data files.
A common use for this function is to remove entries for datasets
that an application or user has deleted outside of SCR.
For instance, if an application deletes a dataset without calling SCR_Delete,
it can call SCR_Drop to maintain a consistent view of available datasets in the SCR index file.




Space/time semantics

SCR imposes the following semantics which enable an application to limit where and when it accesses its data:


	For best performance,
a process of a given MPI rank may only access files previously written by itself
or by processes having the same MPI rank in prior runs.
We say that a rank “owns” the files it writes.
Shared access to files is permitted, though that may reduce performance.


	During a checkpoint/output phase,
a process may only access files of the dataset
between calls to SCR_Start_output and SCR_Complete_output.
Once a process calls SCR_Complete_output it may no longer access
any file it registered as part of that dataset through a call to SCR_Route_file.


	During a restart,
a process may only access files from the currently loaded checkpoint,
and it must access those files between calls to SCR_Start_restart and SCR_Complete_restart.
Once a process calls SCR_Complete_restart it may no longer access its restart files.
SCR selects which checkpoint is considered to be the “most recent”.




These semantics enable SCR to cache files on devices that are not globally visible to all processes,
such as node-local storage.
Further, these semantics enable SCR to move, reformat, or delete files as needed,
such that it can manage this cache.



SCR API state transitions
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SCR API State Transition Diagram



Figure SCR API State Transition Diagram illustrates the internal states in
SCR and which API calls can be used from within each state.
The application must call SCR_Init before it may call any other SCR function, except for SCR_Config,
and it may not call SCR functions after calling SCR_Finalize.
Some calls transition SCR from one state to another as shown by the edges between states.
Other calls are only valid when in certain states as shown in the boxes.
For example, SCR_Have_restart is only valid within the Idle state.
All SCR functions are implicitly collective across MPI_COMM_WORLD,
except for SCR_Route_file and SCR_Get_version.





            

          

      

      

    

  

    
      
          
            
  
Integrate SCR

This section provides details on how to integrate the SCR API into an application.
There are three steps to consider: Init/Finalize, Checkpoint, and Restart.
It is recommended to restart using the SCR Restart API, but it is not required.
Sections below describe each case.
Additionally, there is a section describing how to configure SCR
based on application settings.

The presentation here is a good way in practice to integrate SCR in steps.
First, one can add calls to Init and Finalize and stop to check that the
application successfully compiles, links, and runs with the SCR library.
One can run the application with SCR_DEBUG=1 set to verify that SCR_Init is being called.
Second, one can then add Output API calls and stop to verify
that the application properly writes its checkpoints with SCR.
Third, one can then add Restart API calls and stop to verify
that the application successfully reads its checkpoints through SCR.
Finally, one can add any necessary calls to configure SCR based on application options.


Using the SCR API

Before adding calls to the SCR library,
consider that an application has existing checkpointing code that looks like the following:

int main(int argc, char* argv[]) {
  MPI_Init(&argc, &argv);

  /* initialize our state from checkpoint file */
  state = restart();

  for (int t = 0; t < TIMESTEPS; t++) {
    /* ... do work ... */

    /* every so often, write a checkpoint */
    if (t % CHECKPOINT_FREQUENCY == 0)
      checkpoint(t);
  }

  MPI_Finalize();
  return 0;
}

void checkpoint(int timestep) {
  /* rank 0 creates a directory on the file system,
   * and then each process saves its state to a file */

  /* define checkpoint directory for the timestep */
  char checkpoint_dir[256];
  sprintf(checkpoint_dir, "timestep.%d", timestep);

  /* get rank of this process */
  int rank;
  MPI_Comm_rank(MPI_COMM_WORLD, &rank);

  /* rank 0 creates directory on parallel file system */
  if (rank == 0) mkdir(checkpoint_dir);

  /* hold all processes until directory is created */
  MPI_Barrier(MPI_COMM_WORLD);

  /* build file name of checkpoint file for this rank */
  char checkpoint_file[256];
  sprintf(checkpoint_file, "%s/rank_%d.ckpt",
    checkpoint_dir, rank
  );

  /* each rank opens, writes, and closes its file */
  FILE* fs = fopen(checkpoint_file, "w");
  if (fs != NULL) {
    fwrite(checkpoint_data, ..., fs);
    fclose(fs);
  }

  /* wait for all files to be closed */
  MPI_Barrier(MPI_COMM_WORLD);

  /* rank 0 updates the pointer to the latest checkpoint */
  FILE* fs = fopen("latest", "w");
  if (fs != NULL) {
    fwrite(checkpoint_dir, ..., fs);
    fclose(fs);
  }
}

void* restart() {
  /* rank 0 broadcasts directory name to read from,
   * and then each process reads its state from a file */

  /* get rank of this process */
  int rank;
  MPI_Comm_rank(MPI_COMM_WORLD, &rank);

  /* rank 0 reads and broadcasts checkpoint directory name */
  char checkpoint_dir[256];
  if (rank == 0) {
    FILE* fs = fopen("latest", "r");
    if (fs != NULL) {
      fread(checkpoint_dir, ..., fs);
      fclose(fs);
    }
  }
  MPI_Bcast(checkpoint_dir, sizeof(checkpoint_dir), MPI_CHAR, ...);

  /* build file name of checkpoint file for this rank */
  char checkpoint_file[256];
  sprintf(checkpoint_file, "%s/rank_%d.ckpt",
    checkpoint_dir, rank
  );

  /* each rank opens, reads, and closes its file */
  FILE* fs = fopen(checkpoint_file, "r");
  if (fs != NULL) {
    fread(state, ..., fs);
    fclose(fs);
  }

  return state;
}





The following code exemplifies the changes necessary to integrate SCR.
Each change is numbered for further discussion below.


Init/Finalize

You must add calls to SCR_Init and SCR_Finalize
in order to start up and shut down the library.
The SCR library uses MPI internally,
and all calls to SCR must be from within a well defined MPI environment,
i.e., between MPI_Init and MPI_Finalize.

For example, one can modify the source to look something like this:

/**** change #0 ****/
#include "scr.h"

int main(int argc, char* argv[]) {
  MPI_Init(&argc, &argv);

  /* add optional calls to SCR_Config() to configure SCR
   * based on application command line options */
  //SCR_Configf("SCR_PREFIX=%s", ...);

  /**** change #1 ****/
  SCR_Init();

  state = restart();

  for (int t = 0; t < TIMESTEPS; t++) {
    /* ... do work ... */

    /**** change #2 ****/
    int need_checkpoint;
    SCR_Need_checkpoint(&need_checkpoint);
    if (need_checkpoint)
      checkpoint(t);

    /**** change #3 ****/
    int should_exit;
    SCR_Should_exit(&should_exit);
    if (should_exit)
      break;
  }

  /**** change #4 ****/
  SCR_Finalize();

  MPI_Finalize();
  return 0;
}





First, as noted in change #0,
include the SCR header in any source file where SCR calls are added.

As shown in change #1,
one must call SCR_Init() to initialize the SCR library before it can be used.
SCR uses MPI, so SCR must be initialized after MPI has been initialized.
Internally, SCR duplicates MPI_COMM_WORLD during SCR_Init,
so MPI messages from the SCR library do not mix with messages sent by the application.

Additionally, one may configure SCR with calls to SCR_Config.
Any calls to SCR_Config must come before SCR_Init.
Because it is common to configure SCR based on application command line options provided by the user,
it is typical to call SCR_Init after application command line processing.
For some common examples with SCR_Config, see Configure SCR for application settings.

Then, as shown in change #4,
one should shut down the SCR library by calling SCR_Finalize().
This must be done before calling MPI_Finalize().
Some applications contain multiple calls to MPI_Finalize.
In such cases, be sure to account for each call.
It is important to call SCR_Finalize,
because SCR flushes any cached dataset to the prefix directory at this point.

As shown in change #2,
the application may rely on SCR to determine when to
checkpoint by calling SCR_Need_checkpoint().
SCR can be configured with information on failure rates and checkpoint costs
for the particular host platform, so this function provides a portable
method to guide an application toward an optimal checkpoint frequency.
For this, the application should call SCR_Need_checkpoint
at each opportunity that it could checkpoint, e.g., at the end of each time step,
and then initiate a checkpoint when SCR advises it to do so.
An application may ignore the output of SCR_Need_checkpoint,
and it does not have to call the function at all.
The intent of SCR_Need_checkpoint is to provide a portable way for
an application to determine when to checkpoint across platforms with different
reliability characteristics and different file system speeds.

Also note how the application can call SCR_Should_exit
to determine whether it is time to stop as shown in change #3.
This is important so that an application stops with sufficient
time remaining to copy datasets from cache to the parallel file system
before the allocation expires.
It is recommended to call this function after completing a checkpoint.



Checkpoint

To actually write a checkpoint, there are three steps.
First, the application must call SCR_Start_output with the SCR_FLAG_CHECKPOINT flag
to define the start boundary of a new checkpoint.
It must do this before it creates any file belonging to the new checkpoint.
Then, the application must call SCR_Route_file for each file
that it will write in order to register the file with SCR and to
acquire the full path to be used to open the file.
Finally, it must call SCR_Complete_output
to define the end boundary of the checkpoint.

Every process must call SCR_Start_output and SCR_Complete_output,
even if the process does not write any files during the checkpoint.
These two functions are collective over all processes in MPI_COMM_WORLD.
Only processes that write files need to call SCR_Route_file.
All files registered through a call to SCR_Route_file between a given
SCR_Start_output and SCR_Complete_output pair are considered to
be part of the same checkpoint file set.

Some example SCR checkpoint code looks like the following:

void checkpoint(int timestep) {
  /* each process saves its state to a file */

  /**** change #5 ****/
  char ckpt_name[SCR_MAX_FILENAME];
  snprintf(ckpt_name, sizeof(ckpt_name), "timestep.%d", timestep);
  SCR_Start_output(ckpt_name, SCR_FLAG_CHECKPOINT);

  /* define checkpoint directory for the timestep */
  char checkpoint_dir[256];
  sprintf(checkpoint_dir, "timestep.%d", timestep);

  /* get rank of this process */
  int rank;
  MPI_Comm_rank(MPI_COMM_WORLD, &rank);

  /**** change #6 ****/
  /*
      if (rank == 0)
        mkdir(checkpoint_dir);

      // hold all processes until directory is created
      MPI_Barrier(MPI_COMM_WORLD);
  */

  /* build file name of checkpoint file for this rank */
  char checkpoint_file[256];
  sprintf(checkpoint_file, "%s/rank_%d.ckpt",
    checkpoint_dir, rank
  );

  /**** change #7 ****/
  char scr_file[SCR_MAX_FILENAME];
  SCR_Route_file(checkpoint_file, scr_file);

  /**** change #8 ****/
  /* each rank opens, writes, and closes its file */
  int valid = 1;
  FILE* fs = fopen(scr_file, "w");
  if (fs != NULL) {
    int write_rc = fwrite(checkpoint_data, ..., fs);
    if (write_rc == 0) {
      /* failed to write file, mark checkpoint as invalid */
      valid = 0;
    }
    fclose(fs);
  } else {
    /* failed to open file, mark checkpoint as invalid */
    valid = 0;
  }

  /**** change #9 ****/
  /*
      // wait for all files to be closed
      MPI_Barrier(MPI_COMM_WORLD);

      // rank 0 updates the pointer to the latest checkpoint
      FILE* fs = fopen("latest", "w");
      if (fs != NULL) {
        fwrite(checkpoint_dir, ..., fs);
        fclose(fs);
      }
  */

  /**** change #10 ****/
  SCR_Complete_output(valid);
}





As shown in change #5, the application must inform SCR when it is starting a new checkpoint
by calling SCR_Start_output() with the SCR_FLAG_CHECKPOINT.
The application should provide a name for the checkpoint,
and all processes must provide the same name and the same flags values.
In this example, the application timestep is used to name the checkpoint.
For applications that create a directory to hold all files of a checkpoint,
the name of the directory often serves as a good value for the SCR checkpoint name.

The application must inform SCR when it has completed the checkpoint
with a corresponding call to SCR_Complete_output()
as shown in change #10.
When calling SCR_Complete_output(), each process sets the valid flag to indicate
whether it wrote all of its checkpoint files successfully.
Note how a valid variable has been added to track any errors while writing the checkpoint.

SCR manages checkpoint directories,
so the mkdir operation is removed in change #6.
Additionally, the application can rely on SCR to track the latest checkpoint,
so the logic to track the latest checkpoint is removed in change #9.

Between the call to SCR_Start_output() and SCR_Complete_output(),
the application must register each of its checkpoint files by calling
SCR_Route_file() as shown in change #7.
As input, the process may provide either an absolute or relative path to its checkpoint file.
If given a relative path, SCR internally prepends the current working directory to the path when SCR_Route_file() is called.
In either case, the fully resolved path must be located somewhere within the prefix directory.
If SCR copies the file to the parallel file system, it writes the file to this path.
When storing the file in cache, SCR “routes” the file by replacing any leading directory
on the file name with a path that points to a cache directory.
SCR returns this routed path as output.

As shown in change #8,
the application must use the exact string returned by SCR_Route_file() to open
its checkpoint file.



Restart with SCR

To use SCR for restart, the application must call SCR_Have_restart
to determine whether SCR has a previous checkpoint loaded.
If there is a checkpoint available, the application
can call SCR_Start_restart to tell SCR that it is initiating a restart operation.

The application must call SCR_Route_file to acquire the
full path to each file that it will read during the restart.
The calling process can specify either an absolute or relative path in its input file name.
If given a relative path, SCR internally prepends the current working directory when SCR_Route_file() is called.
The fully resolved path must be located somewhere within the prefix directory and it must correspond
to a file associated with the particular checkpoint name that SCR returned in SCR_Start_restart.

After the application reads its checkpoint files, it must call
SCR_Complete_restart to indicate that it has completed reading its checkpoint files.
If any process fails to read its checkpoint files,
SCR_Complete_restart returns something other than SCR_SUCCESS on all processes
and SCR prepares the next most recent checkpoint if one is available.
The application can try again with another call to SCR_Have_restart.

For backwards compatibility, the application can provide just a file name in SCR_Route_file
during restart, even if the combination of the current working directory and the provided file name
do not specify the correct path on the parallel file system.
This usage is deprecated, and it may be not be supported in future releases.
Instead it is recommended that one construct the full path to the checkpoint file
using information from the checkpoint name returned by SCR_Start_restart.

Some example SCR restart code may look like the following:

void* restart() {
  /* each process reads its state from a file */

  /**** change #12 ****/
  int restarted = 0;
  while (! restarted) {

    /**** change #13 ****/
    int have_restart = 0;
    char ckpt_name[SCR_MAX_FILENAME];
    SCR_Have_restart(&have_restart, ckpt_name);
    if (! have_restart) {
      /* no checkpoint available from which to restart */
      break;
    }

    /**** change #14 ****/
    SCR_Start_restart(checkpoint_dir);

    /* get rank of this process */
    int rank;
    MPI_Comm_rank(MPI_COMM_WORLD, &rank);

    /**** change #15 ****/
    /*
        // rank 0 reads and broadcasts checkpoint directory name
        char checkpoint_dir[256];
        if (rank == 0) {
          FILE* fs = fopen("latest", "r");
          if (fs != NULL) {
            fread(checkpoint_dir, ..., fs);
            fclose(fs);
          }
        }
        MPI_Bcast(checkpoint_dir, sizeof(checkpoint_dir), MPI_CHAR, ...);
    */

    /**** change #16 ****/
    /* build path of checkpoint file for this rank given the checkpoint name */
    char checkpoint_file[256];
    sprintf(checkpoint_file, "%s/rank_%d.ckpt",
      ckpt_name, rank
    );

    /**** change #17 ****/
    char scr_file[SCR_MAX_FILENAME];
    SCR_Route_file(checkpoint_file, scr_file);

    /**** change #18 ****/
    /* each rank opens, reads, and closes its file */
    int valid = 1;
    FILE* fs = fopen(scr_file, "r");
    if (fs != NULL) {
      int read_rc = fread(state, ..., fs);
      if (read_rc == 0) {
        /* failed to read file, mark restart as invalid */
        valid = 0;
      }
      fclose(fs);
    } else {
      /* failed to open file, mark restart as invalid */
      valid = 0;
    }

    /**** change #19 ****/
    int rc = SCR_Complete_restart(valid);

    /**** change #20 ****/
    restarted = (rc == SCR_SUCCESS);
  }

  if (restarted) {
    return state;
  } else {
    return new_run_state;
  }
}





With SCR, the application can attempt to restart from its most recent checkpoint,
and if that fails, SCR loads the next most recent checkpoint.
This process continues until the application successfully restarts or exhausts
all available checkpoints.
To enable this, we create a loop around the restart process, as shown in change #12.

For each attempt, the application must first call SCR_Have_restart() to
determine whether SCR has a checkpoint available as shown in change #13.
If there is a checkpoint,
the application calls SCR_Start_restart() as shown in change #14 to inform SCR that it is beginning its restart.
The application logic to identify the latest checkpoint is removed in change #15,
since SCR manages which checkpoint to load.
The application should use the checkpoint name returned in SCR_Start_restart()
to construct the path to its checkpoint file as shown in change #16.
In this case, the checkpoint name is the same as the checkpoint directory,
so the path to the file is easy to compute.
The application obtains the path to its checkpoint file
by calling SCR_Route_file() in change #17.
It uses this path to open the file for reading in change #18.
After the process reads each of its checkpoint files,
it informs SCR that it has completed reading its data with a call
to SCR_Complete_restart() in change #19.

When calling SCR_Complete_restart(), each process sets the valid flag to indicate
whether it read all of its checkpoint files successfully.
Note how a valid variable has been added to track whether the process successfully reads its checkpoint.

As shown in change #20, SCR returns SCR_SUCCESS from SCR_Complete_restart() if all processes succeeded.
If the return code is something other than SCR_SUCCESS, then at least one process failed to restart.
In that case, SCR loads the next most recent checkpoint if one is available,
and the application can call SCR_Have_restart() to iterate through the process again.

It is not required for an application to loop on failed restarts, but SCR allows for that.
SCR never loads a checkpoint that is known to be incomplete or one that is explicitly marked as invalid,
though it is still possible the application will encounter an error while reading those files on restart.
If an application fails to restart from a checkpoint, SCR marks that checkpoint as invalid
so that it will not attempt to load that checkpoint again in future runs.

It is possible to use the SCR Restart API even if the application must restart from a global file system.
For such applications, one should set SCR_GLOBAL_RESTART=1.
Under this mode, SCR flushes any cached checkpoint to the prefix directory during SCR_Init,
and it configures its restart operation to use cache bypass mode so that SCR_Route_file
directs the application to read its files directly from the parallel file system.



Restart without SCR

If the application does not use SCR for restart,
it should not make calls to SCR_Have_restart,
SCR_Start_restart, SCR_Route_file, or
SCR_Complete_restart during the restart.
Instead, it should access files directly from the parallel file system.

When not using SCR for restart, one should set SCR_FLUSH_ON_RESTART=1,
which causes SCR to flush any cached checkpoint to the file system during SCR_Init.
Additionally, one should set SCR_FETCH=0 to disable SCR from loading a checkpoint during SCR_Init.
The application can then read its checkpoint from the parallel file system after calling SCR_Init.

If the application reads a checkpoint that it previously wrote through SCR,
it should call SCR_Current after SCR_Init to notify SCR which checkpoint that it restarted from.
This lets SCR configure its internal state to properly track the ordering of new datasets that the application writes.

If restarting without SCR and if SCR_Current is not called,
the value of the SCR_FLUSH counter will not be preserved between restarts.
The counter will be reset to its upper limit with each restart.
Thus each restart may introduce some offset in a sequence of periodic SCR flushes.



Configure SCR for application settings

Applications often provide their users with command line options
or configuration files whose settings need to affect how SCR behaves.
For this, one can call SCR_Config to configure SCR before calling SCR_Init.

For example, it is common for applications to provide an --output <dir> option
that sets the directory in which datasets are written.
One typically must set SCR_PREFIX to that same path:

SCR_Configf("SCR_PREFIX=%s", dir);





Many applications provide at least two restart modes:
one in which the application restarts from its most recent checkpoint,
and one in which the user names a specific checkpoint.
To restart from the most recent checkpoint,
one can just rely on the normal SCR behavior,
since SCR restarts from the most recent checkpoint by default.
In the case that a specific checkpoint is named,
one can set SCR_CURRENT to the appropriate dataset name:

SCR_Configf("SCR_CURRENT=%s", ckptname);





Some applications provide users with options that determine
file access patterns and the size of output datasets.
For those, it may be useful to call SCR_Config to set parameters such as
SCR_CACHE_BYPASS, SCR_GLOBAL_RESTART, and SCR_CACHE_SIZE.

A number of common configuration settings are listed in Common configurations.




Building with the SCR library

To compile and link with the SCR library,
add the flags shown below to your compile and link lines.
The value of the variable SCR_INSTALL_DIR should be the path
to the installation directory for SCR.



	Compile Flags

	-I$(SCR_INSTALL_DIR)/include



	C Dynamic Link Flags

	-L$(SCR_INSTALL_DIR)/lib64 -lscr -Wl,-rpath,$(SCR_INSTALL_DIR)/lib64



	C Static Link Flags

	-L$(SCR_INSTALL_DIR)/lib64 -lscr



	Fortran Dynamic Link Flags

	-L$(SCR_INSTALL_DIR)/lib64 -lscrf -Wl,-rpath,$(SCR_INSTALL_DIR)/lib64



	Fortran Static Link Flags

	-L$(SCR_INSTALL_DIR)/lib64 -lscrf







Note

On some platforms the default library installation path will be /lib instead of /lib64.



If Spack was used to build SCR, the SCR_INSTALL_DIR can be found with:

spack location -i scr





For applications built with CMake,
SCR provides an scrConfig.cmake package configuration file
that defines C and Fortran targets for its shared and static libraries.



	C Shared Library

	scr::scr



	C Static Library

	scr::scr-static



	Fortran Shared Library

	scr::scrf



	Fortran Static Library

	scr::scrf-static






These targets define the compile and link flags necessary for SCR and its dependencies.
For example, to compile and link to the SCR shared library,
the CMakeLists.txt of a C application can use statements like:

FIND_PACKAGE(scr REQUIRED)
ADD_EXECUTABLE(myapp myapp.c)
TARGET_LINK_LIBRARIES(myapp PRIVATE scr::scr)





The SCR package configuration file is installed to ${SCR_INSTALL_DIR}/share/scr/cmake.
One should include this path in the CMake prefix search path, e.g.,:

export CMAKE_PREFIX_PATH=${SCR_INSTALL_DIR}









            

          

      

      

    

  

    
      
          
            
  
Configure a job

The default SCR configuration suffices for many Linux clusters.
However, significant performance improvement or additional functionality
may be gained via custom configuration.


Setting parameters

SCR searches the following locations in the following order for a parameter value,
taking the first value it finds.


	Environment variables,


	User configuration file,


	Values set with SCR_Config,


	System configuration file,


	Compile-time constants.




A convenient method to set an SCR parameter is through an environment variable, e.g.,:

export SCR_CACHE_SIZE=2





In cases where SCR parameters need to be set based
on the run time configuration of the application,
the application can call SCR_Config, e.g.,:

SCR_Config("SCR_CACHE_SIZE=2");





Section Configure SCR for application settings lists common use cases for SCR_Config.

SCR also offers two configuration files:
a user configuration file and a system configuration file.
The user configuration file is useful for parameters that may need to vary by job,
while the system configuration file is useful for parameters that apply to all jobs.

To find a user configuration file,
SCR looks for a file named .scrconf in the prefix directory.
Alternatively, one may specify the name and location of the user configuration file
by setting the SCR_CONF_FILE environment variable at run time, e.g.,:

export SCR_CONF_FILE=~/myscr.conf





The location of the system configuration file is hard-coded into SCR at build time.
This defaults to <install>/etc/scr.conf.
One may choose a different path using the SCR_CONFIG_FILE CMake option, e.g.,:

cmake -DSCR_CONFIG_FILE=/path/to/scr.conf ...





To set an SCR parameter in a configuration file,
list the parameter name followed by its value separated by an ‘=’ sign.
Blank lines are ignored, and any characters following the ‘#’ comment character are ignored.
For example, a configuration file may contain something like the following:

>>: cat ~/myscr.conf
# set the halt seconds to one hour
SCR_HALT_SECONDS=3600

# set SCR to flush every 20 checkpoints
SCR_FLUSH=20





One can include environment variable expressions in the value of SCR configuration parameters.
SCR interpolates the value of the environment variable at run time before setting the parameter.
This is useful for some parameters like storage paths,
which may only be defined within the allocation environment, e.g.,:

# SLURM system that creates a /dev/shm directory for each job
SCR_CNTL_BASE=/dev/shm/$SLURM_JOBID
SCR_CACHE_BASE=/dev/shm/$SLURM_JOBID







Common configurations

This section describes some common configuration values.
These parameters can be set using any of the methods described above.


Enable debug messages

SCR can print informational messages about its operations, timing, and bandwidth:

SCR_DEBUG=1





This setting is recommended during development and debugging.



Specify the job output directory

By default, SCR uses the current working directory as its prefix directory.
If one needs to specify a different path, set SCR_PREFIX:

SCR_PREFIX=/job/output/dir





It is common to set SCR_PREFIX to be the top-level output directory
of the application.



Specify which checkpoint to load

By default, SCR attempts to load the most recent checkpoint.
If one wants to specify a particular checkpoint,
one can name which checkpoint to load by setting SCR_CURRENT:

SCR_CURRENT=ckptname





The value for the name must match the string that was given as the dataset name
during the call to SCR_Start_output in which the checkpoint was created.



File-per-process vs shared access

Applications achieve the highest performance when only
a single process accesses each file within a dataset.
This mode is termed file-per-process.
In that situation, SCR can keep files in cache locations
that might include node-local storage.

SCR also supports applications that require shared access to files,
where more than one process writes to or reads from a given file.
This mode is termed shared access.
To support shared access to a file,
SCR locates files in global storage like the parallel file system.

Regardless of the type of file access,
one can only use cache when there is sufficient capacity
to store the application files and associated SCR redundancy data.

There are several common SCR configurations depending on the needs of the application.



Write file-per-process, read file-per-process

In this mode, an application uses file-per-process mode
both while writing its dataset during checkpoint/output
and while reading its dataset during restart.
So long as there is sufficient cache capacity,
SCR can use cache including node-local storage for both operations.
To configure SCR for this mode:

SCR_CACHE_BYPASS=0





One must set SCR_CACHE_BYPASS=0 to instruct SCR to use cache.



Write file-per-process, read with shared access

It is somewhat common for an application to write datasets using file-per-process
mode but then require shared access mode to read its checkpoint files during restart.
For example, there might be a top-level file that all processes read.
In this case, SCR can be configured to use cache like node-local storage while writing,
but it must be configured to move files to the prefix directory for restarts:

SCR_CACHE_BYPASS=0
SCR_GLOBAL_RESTART=1





Setting SCR_GLOBAL_RESTART=1 instructs SCR to rebuild any cached datasets
during SCR_Init and then flush them to the prefix directory to read during
the restart phase.



Write with shared access

If an application requires shared access mode while writing its dataset,
SCR must be configured to locate files on a global file system.
In this case, it is best to use the global file system both
for writing datasets during checkpoint/output and for reading files during restart:

SCR_CACHE_BYPASS=1





Setting SCR_CACHE_BYPASS=1 instructs SCR to locate files
within the prefix directory for both checkpoint/output and restart phases.

Cache bypass mode must also be used when the cache capacity
is insufficient to store the application files and SCR redundancy data.

Because cache bypass mode is the most portable across different systems and applications,
it is enabled by default.



Change checkpoint flush frequency

By default, SCR flushes any dataset marked as SCR_FLAG_OUTPUT,
and it flushes every 10th checkpoint.
To flush non-output checkpoint datasets at a different rate,
one can set SCR_FLUSH.
For example, to flush every checkpoint:

SCR_FLUSH=1







Change cache location

By default, SCR uses /dev/shm as its cache base.
One can use a different cache location
by setting SCR_CACHE_BASE.
For example, one might target a path
that points to a node-local SSD:

SCR_CACHE_BASE=/ssd





This parameter is useful in runs that use a single cache location.
When using multiple cache directories within a single run,
one can define store and checkpoint descriptors as described later.



Change control and cache location

At times, one may need to set both the control and cache directories.
For example, some sites configure SLURM
to create a path to temporary storage for each allocation:

SCR_CNTL_BASE=/tmp/$SLURM_JOBID
SCR_CACHE_BASE=/tmp/$SLURM_JOBID





Another use case is when one needs to run multiple, independent
SCR jobs within a single allocation.
This is somewhat common in automated testing frameworks
that run many different test cases in parallel within
a single resource allocation.
To support this, one can configure each run
to use its own control and cache directories:

# for test case 1
SCR_CNTL_BASE=/dev/shm/test1
SCR_CACHE_BASE=/dev/shm/test1

# for test case 2
SCR_CNTL_BASE=/dev/shm/test2
SCR_CACHE_BASE=/dev/shm/test2







Increase cache size

When using cache, SCR stores at most one dataset by default.
One can increase this limit with SCR_CACHE_SIZE,
e.g., to cache up to two datasets:

SCR_CACHE_SIZE=2





It is recommended to use a cache size of at least 2 when possible.



Change redundancy schemes

By default, SCR uses the XOR redundancy scheme
to withstand node failures.
One can change the scheme using the SCR_COPY_TYPE parameter.
For example, to use Reed-Solomon to withstand up to two failures per set:

SCR_COPY_TYPE=RS





In particular, on stable systems where one is using SCR primarily for
its asynchronous flush capability rather than for its fault tolerance,
it may be best to use SINGLE:

SCR_COPY_TYPE=SINGLE





It is possible to use multiple redundancy schemes in a single job.
For this, one must specify checkpoint descriptors as described in Group, store, and checkpoint descriptors.



Enable asynchronous flush

By default, SCR flushes datasets synchronously.
In this mode, the SCR API call that initiates the flush
does not return until the flush completes.
One can configure SCR to use asynchronous flushes instead,
in which case the flush is started during one SCR API call,
and it may be finalized in a later SCR API call.
To enable asynchronous flushes,
one should both set SCR_FLUSH_ASYNC=1
and specify a flush type like PTHREAD:

SCR_FLUSH_ASYNC=1
SCR_FLUSH_TYPE=PTHREAD







Restart with a different number of processes

To restart an application with a different number of processes than used to save the checkpoint,
one must follow the steps listed in Restart without SCR.
Additionally, one should set the following:

SCR_FLUSH_ON_RESTART=1
SCR_FETCH=0








Group, store, and checkpoint descriptors

SCR must have information about process groups,
storage devices, and redundancy schemes.
SCR defines defaults that are sufficient in most cases.

By default, SCR creates a group of all processes in the job called WORLD
and another group of all processes on the same compute node called NODE.

For storage,
SCR requires that all processes be able to access the prefix directory,
and it assumes that /dev/shm is storage local to each compute node.

SCR defines a default checkpoint descriptor that
caches datasets in /dev/shm and protects against
compute node failure using the XOR redundancy scheme.

The above defaults provide reasonable settings for Linux clusters.
If necessary, one can define custom settings via group, store,
and checkpoint descriptors in configuration files.

If more groups are needed, they can be defined in configuration files
with entries like the following:

GROUPS=host1  POWER=psu1  SWITCH=0
GROUPS=host2  POWER=psu1  SWITCH=1
GROUPS=host3  POWER=psu2  SWITCH=0
GROUPS=host4  POWER=psu2  SWITCH=1





Group descriptor entries are identified by a leading GROUPS key.
Each line corresponds to a single compute node,
where the hostname of the compute node is the value of the GROUPS key.
There must be one line for every compute node in the allocation.
It is recommended to specify groups in the system configuration file,
since these group definitions often apply to all jobs on the system.

The remaining values on the line specify a set of group name / value pairs.
The group name is the string to be referenced by store and checkpoint descriptors.
The value can be an arbitrary character string.
All nodes that specify the same value are placed in the same group.
Each unique value defines a distinct group.

In the above example, there are four compute nodes:
host1, host2, host3, and host4.
There are two groups defined: POWER and SWITCH.
Nodes host1 and host2 belong to one POWER group (psu1),
and nodes host3 and host4 belong to another (psu2).
For the SWITCH group,
nodes host1 and host3 belong to one group (0),
and nodes host2 and host4 belong to another (1).

Additional storage can be described in configuration files
with entries like the following:

STORE=/dev/shm      GROUP=NODE   COUNT=1
STORE=/ssd          GROUP=NODE   COUNT=3  FLUSH=PTHREAD
STORE=/dev/persist  GROUP=NODE   COUNT=1  ENABLED=1  MKDIR=0
STORE=/p/lscratcha  GROUP=WORLD





Store descriptor entries are identified by a leading STORE key.
Each line corresponds to a class of storage devices.
The value associated with the STORE key is the
directory prefix of the storage device.
This directory prefix also serves as the name of the store descriptor.
All compute nodes must be able to access their respective storage
device via the specified directory prefix.

The remaining values on the line specify properties of the storage class.
The GROUP key specifies the group of processes that share a device.
Its value must specify a group name.
The GROUP key is optional, and it defaults to NODE if not specified.
The COUNT key specifies the maximum number of datasets
that can be kept in the associated storage.
The user should be careful to set this appropriately
depending on the storage capacity and the application dataset size.
The COUNT key is optional, and it defaults to the value
of the SCR_CACHE_SIZE parameter if not specified.
The ENABLED key enables (1) or disables (0) the store descriptor.
This key is optional, and it defaults to 1 if not specified.
The MKDIR key specifies whether the device supports the
creation of directories (1) or not (0).
This key is optional, and it defaults to 1 if not specified.
The FLUSH key specifies the transfer type to use when
flushing datasets from that storage location.
This key is optional, and it defaults to the value of the SCR_FLUSH_TYPE if not specified.

In the above example, there are four storage devices specified:
/dev/shm, /ssd, /dev/persist, and /p/lscratcha.
The storage at /dev/shm, /ssd, and /dev/persist
specify the NODE group, which means that they are node-local storage.
Processes on the same compute node access the same device.
The storage at /p/lscratcha specifies the WORLD group,
which means that all processes in the job can access the device.
In other words, it is a globally accessible file system.

One can define checkpoint descriptors in a configuration file.
This is especially useful when more than one checkpoint descriptor
is needed in a single job.
Example checkpoint descriptor entries look like the following:

# instruct SCR to use the CKPT descriptors from the config file
SCR_COPY_TYPE=FILE

# enable datasets to be stored in cache
SCR_CACHE_BYPASS=0

# the following instructs SCR to run with three checkpoint configurations:
# - save every 8th checkpoint to /ssd using the PARTNER scheme
# - save every 4th checkpoint (not divisible by 8) and any output dataset
#   to /ssd using RS a set size of 8
# - save all other checkpoints (not divisible by 4 or 8) to /dev/shm using XOR with
#   a set size of 16
CKPT=0 INTERVAL=1 GROUP=NODE   STORE=/dev/shm TYPE=XOR     SET_SIZE=16
CKPT=1 INTERVAL=4 GROUP=NODE   STORE=/ssd     TYPE=RS      SET_SIZE=8  SET_FAILURES=3 OUTPUT=1
CKPT=2 INTERVAL=8 GROUP=SWITCH STORE=/ssd     TYPE=PARTNER BYPASS=1





First, one must set the SCR_COPY_TYPE parameter to FILE.
Otherwise, SCR uses an implied checkpoint descriptor that is defined
using various SCR parameters including SCR_GROUP, SCR_CACHE_BASE,
SCR_COPY_TYPE, and SCR_SET_SIZE.

To store datasets in cache,
one must set SCR_CACHE_BYPASS=0 to disable bypass mode.
When bypass is enabled, all datasets are written directly to the parallel file system.

Checkpoint descriptor entries are identified by a leading CKPT key.
The values of the CKPT keys must be numbered sequentially starting from 0.
The INTERVAL key specifies how often a descriptor is to be applied.
For each checkpoint,
SCR selects the descriptor having the largest interval value that evenly
divides the internal SCR checkpoint iteration number.
It is necessary that one descriptor has an interval of 1.
This key is optional, and it defaults to 1 if not specified.
The GROUP key lists the failure group,
i.e., the name of the group of processes that are likely to fail at the same time.
This key is optional, and it defaults to the value of the
SCR_GROUP parameter if not specified.
The STORE key specifies the directory in which to cache the checkpoint.
This key is optional, and it defaults to the value of the
SCR_CACHE_BASE parameter if not specified.
The TYPE key identifies the redundancy scheme to be applied.
This key is optional, and it defaults to the value of the
SCR_COPY_TYPE parameter if not specified.
The BYPASS key indicates whether to bypass cache
and access data files directly on the parallel file system (1)
or whether to store them in cache (0).  In either case,
redundancy is applied to internal SCR metadata using the specified
descriptor settings.
This key is optional, and it defaults to the value of the
SCR_CACHE_BYPASS parameter if not specified.

Other keys may exist depending on the selected redundancy scheme.
For XOR and RS schemes, the SET_SIZE key specifies
the minimum number of processes to include in each redundancy set.
This defaults to the value of SCR_SET_SIZE if not specified.
For RS, the SET_FAILURES key specifies
the maximum number of failures to tolerate within each redundancy set.
If not specified, this defaults to the value of SCR_SET_FAILURES.

One checkpoint descriptor can be marked with the OUTPUT key.
This indicates that the descriptor should be selected to store datasets
that the application flags with SCR_FLAG_OUTPUT.
The OUTPUT key is optional, and it defaults to 0.
If there is no descriptor with the OUTPUT key defined
and if the dataset is also a checkpoint,
SCR chooses the checkpoint descriptor according to the normal policy.
Otherwise, if there is no descriptor with the OUTPUT key defined
and if the dataset is not a checkpoint,
SCR uses the checkpoint descriptor having an interval of 1.

If one does not explicitly define a checkpoint descriptor,
the default SCR descriptor can be defined in pseudocode as:

CKPT=0 INTERVAL=1 GROUP=$SCR_GROUP STORE=$SCR_CACHE_BASE TYPE=$SCR_COPY_TYPE SET_SIZE=$SCR_SET_SIZE BYPASS=$SCR_CACHE_BYPASS





If those parameters are not set otherwise, this defaults to the following:

CKPT=0 INTERVAL=1 GROUP=NODE STORE=/dev/shm TYPE=XOR SET_SIZE=8 BYPASS=1






Example using SINGLE and XOR

On many systems, application failures are more common than node failures.
The SINGLE redundancy scheme is sufficient to recover from application failures,
and it is much faster than other redundancy schemes like XOR.
If there is room to store multiple checkpoints in cache,
one can configure SCR to use SINGLE and XOR in the same run.
For an application failure, SCR can restart the job from the most recent checkpoint,
but if a node fails, SCR can fallback to the most recent XOR checkpoint.
The following entries configure SCR to encode every 10th checkpoint with XOR
but use SINGLE for all others:

# instruct SCR to use the CKPT descriptors from the config file
SCR_COPY_TYPE=FILE

# enable datasets to be stored in cache
SCR_CACHE_BYPASS=0

# define distinct paths for SINGLE and XOR
STORE=/dev/shm/single COUNT=1
STORE=/dev/shm/xor    COUNT=1

# save every 10th checkpoint using XOR
# save all other checkpoints using SINGLE
CKPT=0 INTERVAL=1  STORE=/dev/shm/single TYPE=SINGLE
CKPT=1 INTERVAL=10 STORE=/dev/shm/xor    TYPE=XOR





This configures SCR to write all checkpoints within /dev/shm,
but separate directories are used for SINGLE and XOR.
By defining distinct STORE locations for each redundancy type,
SCR always deletes an older checkpoint of the same type before writing a new checkpoint.




SCR parameters

The table in this section specifies the full set of SCR configuration parameters.


SCR parameters






	Name

	Default

	Description





	SCR_DEBUG

	0

	Set to 1 or 2 for increasing verbosity levels of debug messages.



	SCR_CHECKPOINT_INTERVAL

	0

	Set to positive number of times SCR_Need_checkpoint should be called before returning 1.
This provides a simple way to set a periodic checkpoint frequency within an application.



	SCR_CHECKPOINT_SECONDS

	0

	Set to positive number of seconds to specify minimum time between consecutive checkpoints as guided by SCR_Need_checkpoint.



	SCR_CHECKPOINT_OVERHEAD

	0.0

	Set to positive floating-point value to specify maximum percent overhead allowed for checkpointing operations as guided by SCR_Need_checkpoint.



	SCR_CNTL_BASE

	/dev/shm

	Specify the default base directory SCR should use to store its runtime control metadata.  The control directory should be in fast, node-local storage like RAM disk.



	SCR_HALT_EXIT

	0

	Whether SCR should call exit() when it detects an active halt condition.
When enabled, SCR can exit the job during SCR_Init and SCR_Complete_output after each successful checkpoint.
Set to 1 to enable.



	SCR_HALT_SECONDS

	0

	Set to a positive integer to instruct SCR to halt the job
if the remaining time in the current job allocation is less than the specified number of seconds.



	SCR_GROUP

	NODE

	Specify name of default failure group.



	SCR_COPY_TYPE

	XOR

	Set to one of: SINGLE, PARTNER, XOR, RS, or FILE.



	SCR_CACHE_BASE

	/dev/shm

	Specify the default base directory SCR should use to cache datasets.



	SCR_CACHE_SIZE

	1

	Set to a non-negative integer to specify the maximum number of checkpoints SCR
should keep in cache.  SCR will delete the oldest checkpoint from cache before
saving another in order to keep the total count below this limit.



	SCR_CACHE_BYPASS

	1

	Specify bypass mode.  When enabled, data files are directly read from and written to the
parallel file system, bypassing the cache.  Even in bypass mode, internal
SCR metadata corresponding to the dataset is stored in cache.
Set to 0 to direct SCR to store datasets in cache.



	SCR_CACHE_PURGE

	0

	Whether to delete all datasets from cache during SCR_Init.
Enabling this setting may be useful for test and development while integrating SCR in an application.



	SCR_SET_SIZE

	8

	Specify the minimum number of processes to include in an redundancy set.
So long as there are sufficient failure groups, each redundancy set will be at least the minimum size.
If not, redundancy sets will be as large as possible, but they may be smaller than the minimum size.
Increasing this value can decrease the amount of storage required to cache the dataset.
However, a higher value can require more time to rebuild lost files,
and it increases the likelihood of encountering a catastrophic failure.



	SCR_SET_FAILURES

	2

	Specify the number of failures to tolerate in each set while using the RS scheme.
Increasing this value enables one to tolerate more failures per set, but it increases
redundancy storage and encoding costs.



	SCR_PREFIX

	$PWD

	Specify the prefix directory on the parallel file system where datasets should be read from and written to.



	SCR_PREFIX_SIZE

	0

	Specify number of checkpoints to keep in the prefix directory.
SCR deletes older checkpoints as new checkpoints are flushed to maintain a sliding window of the specified size.
Set to 0 to keep all checkpoints.
Checkpoints marked with SCR_FLAG_OUTPUT are not deleted.



	SCR_PREFIX_PURGE

	0

	Set to 1 to delete all datasets from the prefix directory (both checkpoint and output) during SCR_Init.



	SCR_CURRENT

	N/A

	Name of checkpoint to mark as current and attempt to load during a new run during SCR_Init.



	SCR_DISTRIBUTE

	1

	Set to 0 to disable cache rebuild during SCR_Init.



	SCR_FETCH

	1

	Set to 0 to disable SCR from fetching files from the parallel file system during SCR_Init.



	SCR_FETCH_BYPASS

	0

	Set to 1 to read files directly from the parallel file system during fetch.



	SCR_FETCH_WIDTH

	256

	Specify the number of processes that may read simultaneously from the parallel file system.



	SCR_FLUSH

	10

	Specify the number of checkpoints between periodic flushes to the parallel file system.  Set to 0 to disable periodic flushes.



	SCR_FLUSH_ASYNC

	0

	Set to 1 to enable asynchronous flush methods (if supported).



	SCR_FLUSH_POSTSTAGE

	0

	Set to 1 to finalize asynchronous flushes using the scr_poststage script,
rather than in SCR_Finalize().  This can be used to start a checkpoint
flush near the end of your job, and have it run “in the background” after
your job finishes.  This is currently only supported by the IBM Burst
Buffer API (BBAPI).   To use this, you need to make sure to specify
scr_poststage as your 2nd-half post-stage script in bsub to
finalize the transfers.  See examples/test_scr_poststage for a
detailed example.



	SCR_FLUSH_TYPE

	SYNC

	Specify the flush transfer method.  Set to one of: SYNC, PTHREAD, BBAPI, or DATAWARP.



	SCR_FLUSH_WIDTH

	256

	Specify the number of processes that may write simultaneously to the parallel file system.



	SCR_FLUSH_ON_RESTART

	0

	Set to 1 to force SCR to flush datasets during restart.
This is useful for applications that restart without using the SCR Restart API.
Typically, one should also set SCR_FETCH=0 when enabling this option.



	SCR_GLOBAL_RESTART

	0

	Set to 1 to flush checkpoints to and restart from the prefix directory during SCR_Init.
This is needed by applications that use the SCR Restart API but require a global file system to restart,
e.g., because multiple processes read the same file.



	SCR_RUNS

	1

	Specify the maximum number of times the scr_srun command should attempt to run a job within an allocation.
Set to -1 to specify an unlimited number of times.



	SCR_MIN_NODES

	N/A

	Specify the minimum number of nodes required to run a job.



	SCR_EXCLUDE_NODES

	N/A

	Specify a set of nodes, using SLURM node range syntax, which should be excluded from runs.
This is useful to avoid particular problematic nodes.
Nodes named in this list that are not part of a the current job allocation are silently ignored.



	SCR_LOG_ENABLE

	0

	Whether to enable any form of logging of SCR events.



	SCR_LOG_TXT_ENABLE

	1

	Whether to log SCR events to text file in prefix directory at $SCR_PREFIX/.scr/log.
SCR_LOG_ENABLE must be set to 1 for this parameter to be active.



	SCR_LOG_SYSLOG_ENABLE

	1

	Whether to log SCR events to syslog.
SCR_LOG_ENABLE must be set to 1 for this parameter to be active.



	SCR_LOG_DB_ENABLE

	0

	Whether to log SCR events to MySQL database.
SCR_LOG_ENABLE must be set to 1 for this parameter to be active.



	SCR_LOG_DB_DEBUG

	0

	Whether to print MySQL statements as they are executed.



	SCR_LOG_DB_HOST

	N/A

	Hostname of MySQL server



	SCR_LOG_DB_NAME

	N/A

	Name of SCR MySQL database.



	SCR_LOG_DB_USER

	N/A

	Username of SCR MySQL user.



	SCR_LOG_DB_PASS

	N/A

	Password for SCR MySQL user.



	SCR_MPI_BUF_SIZE

	131072

	Specify the number of bytes to use for internal MPI send and receive buffers when computing redundancy data or rebuilding lost files.



	SCR_FILE_BUF_SIZE

	1048576

	Specify the number of bytes to use for internal buffers when copying files between the parallel file system and the cache.



	SCR_WATCHDOG_TIMEOUT

	N/A

	Set to the expected time (seconds) for checkpoint writes to in-system storage (see Catch a hanging job).



	SCR_WATCHDOG_TIMEOUT_PFS

	N/A

	Set to the expected time (seconds) for checkpoint writes to the parallel file system (see Catch a hanging job).










            

          

      

      

    

  

    
      
          
            
  
Run a job

In addition to the SCR library,
one may optionally include SCR commands in a job script.
These commands are most useful on systems where failures are common.
The SCR commands prepare the cache, scavenge files from cache to the parallel file system,
and check that the scavenged dataset is complete among other things.
The commands also automate the process of relaunching a job after failure,
including logic to detect to exclude failed nodes.

There are several SCR commands,
most of which are located in the /bin directory where SCR is installed.

For best performance, one should:
1) inform the batch system that the allocation should remain available even after a failure
and 2) replace the command to execute the application with an SCR wrapper script.
The precise set of options and commands to use depends on the system resource manager.


Supported platforms

At the time of this writing, SCR supports specific combinations of resource managers and job launchers.
The descriptions for using SCR in this section apply to
these specific configurations,
however the following description is helpful to understand
how to run SCR on any system.
Please contact us for help in porting SCR to other platforms.
(See Section Support and Additional Information for contact information).



Jobs and job steps

First, we differentiate between a job allocation and a job step.
Our terminology originates from the SLURM resource manager, but
the concepts apply generally across other resource managers.

When a job is scheduled resources on a system,
the batch script executes inside of a job allocation.
The job allocation consists of a set of nodes, a time limit, and a job id.
The job id can be obtained by executing the squeue command
on SLURM, the apstat command on ALPS, and the bjobs command on LSF.

Within a job allocation, a user may run one or more job steps.
One runs a job step using srun on SLURM, aprun on ALPS, or jsrun on LSF.
Each job step is assigned its own step id.

On SLURM, job step ids start at 0 and increment with each issued job step.
Job step ids can be obtained by passing the -s option to squeue.
A fully qualified name of a SLURM job step consists of: jobid.stepid.
For instance, the name 1234.5 refers to step id 5 of job id 1234.

On ALPS, each job step has a unique id that can be obtained
through apstat.



Tolerating node failures

Before running an SCR job, it is recommended to configure the job allocation to withstand node failures.
By default, most resource managers terminate the job allocation if a node fails.
SCR requires the job allocation to remain active in order to restart the job or to scavenge files.
To enable the job allocation to continue past node failures,
one must specify the appropriate flags from the table below.

SCR job allocation flags



	LSF batch script

	#BSUB -env "all, LSB_DJOB_COMMFAIL_ACTION=KILL_TASKS"



	LSF interactive

	bsub -env "all, LSB_DJOB_COMMFAIL_ACTION=KILL_TASKS" ...



	MOAB batch script

	#MSUB -l resfailpolicy=ignore



	MOAB interactive

	qsub -I ... -l resfailpolicy=ignore



	SLURM batch script

	#SBATCH --no-kill



	SLURM interactive

	salloc --no-kill ...








The SCR wrapper scripts

The easiest way to integrate SCR into a batch script is to set some environment variables
and to replace the job run command with an SCR wrapper script.

Example bash job scripts are located in the share/examples directory of an SCR installation:

SLURM:  scr_srun.sh [srun_options]  <prog> [prog_args ...]
SLURM:  scr_srun_loop.sh [srun_options]  <prog> [prog_args ...]
LSF:    scr_jsrun.sh [jsrun_options] <prog> [prog_args ...]
LSF:    scr_jsrun_loop.sh [jsrun_options] <prog> [prog_args ...]





These scripts are customized for different resource managers.
They include the resource manager flag that one needs to set to tolerate node failures.
They call scr_prerun to prepare an allocation before starting a run,
they launch a run with srun or jsrun,
and they call scr_postrun to scavange any cached datasets after the run completes.

The scripts whose name ends with _loop additionally include logic to relaunch
a failed job up to some fixed number of times within the allocation.
Between launches, the scripts call scr_list_down_nodes to detect and avoid failed nodes for the relaunch.
One may allocate spare nodes when using these scripts.

These job scripts serve as templates that one can modify as needed.
However, they can often be used as drop in replacements for the launch command in an existing job script.

In addition to the example bash job scripts, an scr_run command is in the /bin directory of an SCR installation.
This is a python script that, like the bash scripts, executes scr_prerun, scr_postrun,
and it optionally relaunches a run after detecting and excluding any failed nodes.
When using scr_run, one must specify the job launcher as the first argument:

SLURM: scr_run srun [srun_options]  <prog> [prog_args ...]
LSF:   scr_run jsrun [jsrun_options]  <prog> [prog_args ...]







Using the SCR wrapper scripts

All wrapper scripts must run from within a job allocation.
The commands must know the SCR prefix directory.
By default, this is assumed to be the current working directory.
For the scr_run script,
one may specify a different prefix directory by setting the SCR_PREFIX parameter.

When using any of these scripts, it is recommended to set the SCR_HALT_SECONDS
parameter so that the job allocation does not expire before
datasets can be flushed (Section Halt a job).

By default, the scr_run script does not restart an application after the first job step exits.
To automatically restart a job step within the current allocation,
set the SCR_RUNS environment variable to the maximum number of runs to attempt.
For an unlimited number of attempts, set this variable to -1.

After a job step exits, the wrapper script checks whether it should restart the job.
If so, the script sleeps for some time to give nodes in the allocation a chance to clean up.
Then it checks that there are sufficient healthy nodes remaining in the allocation.
By default, the script assumes the next run requires the same number of nodes as the previous run,
which is recorded in a file written by the SCR library.
If this file cannot be read, the command assumes the application requires all nodes in the allocation.
Alternatively, one may override these heuristics and precisely specify the number of nodes needed
by setting the SCR_MIN_NODES environment variable to the number of required nodes.

See Section Configure a job for additional common SCR configuration settings.

For applications that cannot invoke the SCR wrapper scripts as described here,
one should examine the logic contained within the script and duplicate the necessary parts
in the job batch script.
In particular, one should invoke scr_postrun for scavenge support.



Example batch script for using scavenge, but no restart

An example SLURM batch script with scr_srun.sh is shown below

#!/bin/bash
#SBATCH --no-kill

# halt if there is less than an hour remaining (3600 seconds)
export SCR_HALT_SECONDS=3600

# run the job with scr_srun
scr_run.sh -n512 -N64 ./my_job







Example batch script for using scavenge and restart

An example SLURM batch script with scr_srun_loop.sh is shown below

#!/bin/bash
#SBATCH --no-kill

# halt if there is less than an hour remaining (3600 seconds)
export SCR_HALT_SECONDS=3600

# run the job with scr_srun, will run up to 5 times
scr_run_loop.sh -n512 -N64 ./my_job







Example SLURM batch script with scr_run using scavenge and restart

#!/bin/bash
#SBATCH --no-kill
#SBATCH --nodes 66

# above, tell SLURM to not kill the job allocation upon a node failure
# also note that the job requested 2 spares -- it uses 64 nodes but allocated 66

# specify where datasets should be written
export SCR_PREFIX=/parallel/file/system/username/run1

# instruct SCR to flush to the file system every 20 checkpoints
export SCR_FLUSH=20

# halt if there is less than an hour remaining (3600 seconds)
export SCR_HALT_SECONDS=3600

# attempt to run the job up to 3 times
export SCR_RUNS=3

# run the job with scr_srun
scr_run srun -n512 -N64 ./my_job









            

          

      

      

    

  

    
      
          
            
  
Halt a job

When SCR is configured to write datasets to cache,
one needs to take care when terminating a job early
so that SCR can copy datasets from cache to the
parallel file system before the job allocation ends.
This section describes methods to cleanly halt a job,
including detection and termination of a hanging job.


scr_halt and the halt file

The recommended method to stop an SCR application is to use the scr_halt command.
The command must be run from within the prefix directory,
or otherwise, the prefix directory of the target job must be specified as an argument.

A number of different halt conditions can be specified.
In most cases, the scr_halt command communicates these conditions to the running
application via the halt.scr file,
which is stored in the hidden .scr directory within the prefix directory.
The application can determine when to exit by calling SCR_Should_exit.

Additionally, one can set SCR_HALT_EXIT=1 to configure SCR to exit the job
if it detects an active halt condition.
In that case, the SCR library reads the halt file when the application calls SCR_Init
and during SCR_Complete_output after each complete checkpoint.
If a halt condition is satisfied, all tasks in the application call exit.



Halt after next checkpoint

You can instruct an SCR job to halt after completing its next successful checkpoint:

scr_halt





To run scr_halt from outside of a prefix directory,
specify the target prefix directory like so:

scr_halt /p/lscratcha/user1/simulation123





You can instruct an SCR job to halt after completing some number of checkpoints
via the --checkpoints option.
For example, to instruct a job to halt after 10 more checkpoints, use the following:

scr_halt --checkpoints 10





If the last of the checkpoints is unsuccessful,
the job continues until it completes a successful checkpoint.
This ensures that SCR has a successful checkpoint to flush before it halts the job.



Halt before or after a specified time

It is possible to instruct an SCR job to halt after a specified time using
the --after option.
The job will halt on its first successful checkpoint after the specified time.
The time must be specified in ISO format, for example:

scr_halt --after '2023-07-04T21:00:00'





It is also possible to instruct a job to halt before a specified time
using the --before option, for example:

scr_halt --before '2023-07-04T21:00:00'





For the “halt before” condition to be effective,
one must also set the SCR_HALT_SECONDS parameter.
When SCR_HALT_SECONDS is set to a positive number,
SCR checks how much time is left before the specified time limit.
If the remaining time in seconds is less than or equal to SCR_HALT_SECONDS, SCR halts the job.
The value of SCR_HALT_SECONDS does not affect the “halt after” condition.

It is highly recommended that SCR_HALT_SECONDS be set
so that the SCR library can impose a default “halt before” condition using the end time
of the job allocation.
This ensures the latest checkpoint can be flushed before the allocation is lost.

It is important to set SCR_HALT_SECONDS to a value large enough
that SCR has time to completely flush (and rebuild) files before the allocation expires.
Consider that a checkpoint may be taken just before the
remaining time is less than SCR_HALT_SECONDS.
If a code checkpoints every X seconds and it takes Y seconds
to flush files from the cache and rebuild, set SCR_HALT_SECONDS = X + Y + Delta,
where Delta is some positive value to provide additional slack time.

One may also set the halt seconds via the --seconds option to scr_halt.
Using the scr_halt command, one can set, change, and unset the halt seconds on a running job.

NOTE: If any scr_halt commands are specified as part of the batch script before
the first run starts,
one must then use scr_halt to set the halt seconds for the job rather than
the SCR_HALT_SECONDS parameter.
The scr_halt command creates the halt file,
and if a halt file exists before a job starts to run,
SCR ignores any value specified in the SCR_HALT_SECONDS parameter.



Halt immediately

Sometimes, you need to halt an SCR job immediately, and there are two options for this.
You may use the --immediate option:

scr_halt --immediate





This command first updates the halt file, so that the job will not be restarted once stopped.
Then, it kills the current run.

If for some reason the --immediate option fails to work,
you may manually halt the job. [1]
First, issue a simple scr_halt so the job will not restart,
and then manually kill the current run using mechanisms provided by the resource manager,
e.g., scancel for SLURM and apkill for ALPS.
When using mechanisms provided by the resource manager to kill the
current run, be careful to cancel the job step and not the job allocation.
Canceling the job allocation destroys the cache.

For SLURM, to get the job step id, type: squeue -s.
Then be sure to include the job id and step id in the scancel argument.
For example, if the job id is 1234 and the step id is 5, then use the following commands:

scr_halt
scancel 1234.5





Do not just type scancel 1234 – be sure to include the job step id.

For ALPS, use apstat to get the apid of the job step to kill.
Then, follow the steps as described above: execute scr_halt
followed by the kill command apkill <apid>.



[1]
On Cray/ALPS, scr_halt --immediate is not yet supported. The alternate method described in the text must be used instead.





Catch a hanging job

If an application hangs, SCR may not be given the chance
to copy files from cache to the parallel file system before the allocation expires.
To avoid losing significant work due to a hang,
SCR attempts to detect if a job is hanging, and if so,
SCR attempts to kill the job step so that it can be restarted in the allocation.

On some systems, SCR employs the io-watchdog
library for this purpose.
For more information on this tool, see http://code.google.com/p/io-watchdog.

On systems where io-watchdog is not available,
SCR uses a generic mechanism based on the expected
time between checkpoints as specified by the user. If the time between checkpoints
is longer than expected, SCR assumes the job is hanging.
Two SCR parameters determine how many seconds should pass
between I/O phases in an application, i.e. seconds between
consecutive calls to SCR_Start_output.
These are SCR_WATCHDOG_TIMEOUT
and SCR_WATCHDOG_TIMEOUT_PFS. The first parameter
specifies the time to wait when SCR writes checkpoints to
in-system storage, e.g. SSD or RAM disk, and the second
parameter specifies the time to wait when SCR writes
checkpoints to the parallel file system.
The reason for the two timeouts is that writing to the parallel
file system generally takes much longer than writing to in-system
storage, and so a longer timeout period is useful in that case.

When using this feature, be careful to check that the job does not hang near the end of its allocation time limit,
since in this case, SCR may not kill the run with enough time before the allocation ends.
If you suspect the job to be hanging and you deem that SCR will not
kill the run in sufficient time, manually cancel the run as described above.



Combine, list, change, and unset halt conditions

It is possible to specify multiple halt conditions.
To do so, simply list each condition in the same scr_halt command or issue several commands.
For example, to instruct a job to halt after 10 checkpoints or before a certain time,
which ever comes earlier, you could issue the following command:

scr_halt --checkpoints 10 --before '2023-07-04T21:00:00'





The following sequence also works:

scr_halt --checkpoints 10
scr_halt --before '2023-07-04T21:00:00'





You may list the current settings in the halt file with the --list option, e.g.,:

scr_halt --list





You may change a setting by issuing a new command to overwrite the current value.

Finally, you can unset some halt conditions by prepending unset- to the option names.
See the scr_halt man page for a full listing of unset options.
For example, to unset the “halt before” condition on a job, type the following:

scr_halt --unset-before







Remove the halt file

Sometimes, especially during testing, you may want to run in an existing
allocation after halting a previous run.
When SCR detects a halt file with a satisfied halt condition, it immediately exits.
This is the desired effect when trying to halt a job,
however this mechanism also prevents one from intentionally running in an allocation
after halting a previous run.
Along these lines, know that SCR registers a halt condition whenever
the application calls SCR_Finalize.

When there is a halt file with a satisfied halt condition,
a message is printed to stdout to indicate why SCR is halting.
To run in such a case, first remove the satisfied halt conditions.
You can unset the conditions or reset them to appropriate values.
Another approach is to remove the halt file via the --remove option.
This deletes the halt file, which effectively removes all halt conditions.
For example, to remove the halt file from a job, type:

scr_halt --remove









            

          

      

      

    

  

    
      
          
            
  
Manage datasets

SCR records the status of datasets that are on the parallel file system in the index.scr file.
This file is written to the hidden .scr directory within the prefix directory.
The library updates the index file as an application runs and during scavenge operations.

While restarting a job, the SCR library reads the index file during SCR_Init
to determine which checkpoints are available.
The library attempts to restart with the most recent checkpoint and works backwards
until it successfully loads a valid checkpoint.
SCR does not restart from any checkpoint marked as “incomplete” or “failed”.
A checkpoint is marked as incomplete if it was determined to be invalid during the flush or scavenge.
Additionally, the library marks a checkpoint as failed if it detected a problem
during a previous restart attempt (e.g., detected data corruption).
In this way, the library avoids invalid or problematic checkpoints.

One may list or modify the contents of the index file via the scr_index command.
The scr_index command must run within the prefix directory,
or otherwise, one may specify a prefix directory using the --prefix option.
The default behavior of scr_index is to list the contents of the index file, e.g.:

>>: scr_index
DSET VALID FLUSHED             CUR NAME
  18 YES   2014-01-14T11:26:06   * ckpt.18
  12 YES   2014-01-14T10:28:23     ckpt.12
   6 YES   2014-01-14T09:27:15     ckpt.6





When listing datasets, scr_index lists a field indicating whether the dataset is valid,
the time it was flushed to the parallel file system,
and finally the dataset name.

One checkpoint may also be marked as “current”.
When restarting a job, the SCR library starts from the current dataset and works backwards.
The current dataset is denoted with a leading * character in the CUR column.
One can change the current checkpoint using the --current option,
providing the dataset name as an argument:

scr_index --current ckpt.12





If no dataset is marked as current,
SCR starts with most recent valid checkpoint.

One may drop entries from the index file using the --drop option.
This operation does not delete the corresponding dataset files.
It only drops the entry from the index.scr file:

scr_index --drop ckpt.50





This is useful if one deletes a dataset from the parallel file system
and then wishes to update the index.

If an entry is removed inadvertently, one may add it back with:

scr_index --add ckpt.50





This requires all SCR metadata files to exist in their associated scr.dataset subdirectory
within the hidden .scr directory within the prefix directory.

In most cases, the SCR library or the SCR commands add all necessary entries to the index file.
However, there are cases where they may fail.
In particular, if the scr_postrun command successfully scavenges a dataset
but the resource allocation ends before the command can rebuild missing files,
an entry may be missing from the index file.
In such cases, one may manually add the corresponding entry
using the --build option.

When adding a new dataset to the index file,
the scr_index command checks whether the files in a dataset
constitute a complete and valid set.
It rebuilds missing files if there are sufficient redundant data,
and it writes the summary.scr file for the dataset if needed.
One must provide the SCR dataset id as an argument.
To obtain the SCR dataset id value, lookup the trailing integer on the names of scr.dataset subdirectories
in the hidden .scr directory within the prefix directory:

scr_index --build 50








            

          

      

      

    

  

    
      
          
            

Index



 




            

          

      

      

    

  

    
      
          
            
  To illustrate how files and directories are arranged in SCR,
consider the example shown in Figure Example SCR directories.
In this example, a user named user1
runs a 3-task MPI job with one task per compute node.
The base directory for the control directory is /dev/shm,
the base directory for the cache directory is /ssd,
and the prefix directory is /pscratch/user1/simulation123.
The control and cache directories are storage devices local to the compute node.


[image: ../_images/directories_wide3.png]

Example SCR directories



The full path of the control directory is /dev/shm/user1/scr.5132.
This is derived from the concatenation of the control base directory /dev/shm,
the user name user1, and the allocation id 5132.
SCR keeps files to persist its internal state in the control directory,
including a cindex.scrinfo file as shown.

Similarly, the cache directory is /ssd/user1/scr.5132,
which is derived from the concatenation of the cache base directory /ssd,
the user name user1, and the allocation id 5132.
Within the cache directory, SCR creates a subdirectory for each dataset.
In this example, there are two datasets with ids 5 and 6.
The application dataset files and SCR redundancy files
are stored within their corresponding dataset directory.
On the node running MPI rank 0,
there is one application dataset file rank_0.ckpt,
and numerous SCR metadata files in a hidden .scr subdirectory.

The full path of the prefix directory is /pscratch/user1/simulation123.
This is a path on the parallel file system that is specified by the user.
It is unique to the particular simulation the user is running simulation123.

The prefix directory contains a hidden .scr directory where SCR writes
its index.scr file to record info for each of the datasets (see Manage datasets).
The SCR library writes other files to this hidden directory,
including the halt.scr file (see Halt a job).
Within the .scr directory, SCR also creates a directory
for each dataset named scr.dataset.<id> where <id> is the dataset id.
SCR stores metadata files that are specific to the dataset in these dataset directories
including summary.scr and rank2file files along with redundancy files.

Application files for each dataset are written to their original path within the prefix directory
as the application specified during its call to SCR_Route_file.
In this example, the application stores all files for a particular dataset within its own subdirectory.
There are directories named ckpt.5 and ckpt.6 corresponding to two datasets.
The files from all processes for each dataset are contained within its respective ckpt directory.
Application file names and directory paths can be arbitrary so long as all items are placed within
the prefix directory and item names in each dataset are distinct from names in other datasets.
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